• Title/Summary/Keyword: impact forecast

Search Result 288, Processing Time 0.027 seconds

The Forecasting of Market Size and Additional Requirement of Technical Manpower in Korean Engineering Industry (우리나라 엔지니어링산업의 시장전망과 기술인력 필요공급량 추정에 관한 연구)

  • 최정호;박수신;김지수
    • Proceedings of the Technology Innovation Conference
    • /
    • 1997.12a
    • /
    • pp.177-196
    • /
    • 1997
  • The engineering industry plays an important role for national competitive, since it has an high impact on other industries. With its importance, the engineering industry development largely depends on its technical manpower ather than capital factor. This study aims at estimating the additional requirement on technical manpower based on the forecasted market size which represents the structure change corresponding to economic growth in related industry. Research scope includes the twelve of fifteen field except three with insufficient historical data and technical manpower above bachelor degree. Specialty, we forecast market size with determinants resulted from historical data analysis on each field. The demand on technical manpower is derived from the forecasted market. We also estimate an additional requirement with the supply analysis. The research results show different patterns over time period. The relative ratio on chemical and construction to total market will steadily grow over short term, while applied, environment, electronic and information will rapidly grow This pattern will be stabilized over mid or long term. The additional requirement on technical manpower represents the similar pattern to market growth. The research result implies manpower policy for having high inflow of technical engineer from educational institute and the related industries through the image improvement.

  • PDF

A Study on the Change & Flow of Shop Interior Planning & Design -Focus on Retail Stores in Great Cities in U.S.A- (상업공간에 대한 실내디자인 및 계획의 변화와 흐름에 관한 연구 -미국 대도시의 RETAIL STORE를 중심으로-)

  • 박태욱;이현경
    • Korean Institute of Interior Design Journal
    • /
    • no.10
    • /
    • pp.77-81
    • /
    • 1997
  • The study is for interior design and planning of new c conceptual modern shop(called "Value Conscious Store") t through the history of retail store, and its process is based on m most great cites in USA. The Value Conscious Store has c come into existence for consumer and retailer who have had v various lifestyles and characters. From analysis of new l lifestyle consumer to retailer's strategy. we could find i interesting design solutions and, forecast next concerns for d designing store. Store has been designed up-scaled and opened to give pleasure and comfort and made by a theme to m make unique and strong impact for customers. Also it uses M Multi-Media for excitment, and is designed as exhibition of m museum to lead constomers to new culture and trend. From t these interior trends will go on to next generation with new c concepts : environment and nature, senses and sensibility. T These words will be the new solution for creative and s successful store design by the designer who has environm mentally conscious and social responsibility in his mind. his mind.

  • PDF

Study on Reserve Requirement for Wind Power Penetration based on the Cost/Reliability Analysis

  • Shin, Je-Seok;Kim, Jin-O;Bae, In-Su
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1397-1405
    • /
    • 2017
  • As the introduction of wind power is steadily increasing, negative effects of wind power become more important. To operate a power system more reliable, the system operator needs to recognize the maximum required capacity of available generators for a certain period. For recognizing the maximum capacity, this paper proposes a methodology to determine an optimal reserve requirement considering wind power, for the certain period in the mid-term perspective. As wind speed is predicted earlier, the difference of the forecasted and the actual wind speed becomes greater. All possible forecast errors should be considered in determining optimal reserve, and they are represented explicitly by the proposed matrix form in this paper. In addition, impacts of the generator failure are also analyzed using the matrix form. Through three main stages which are the scheduling, contingency and evaluation stages, costs associated with power generation, reserve procurement and the usage, and the reliability cost are calculated. The optimal reserve requirement is determined so as to minimize the sum of these costs based on the cost/reliability analysis. In case study, it is performed to analyze the impact of wind power penetration on the reserve requirement, and how major factors affect it.

A Case Study of Ionic Components in the Size-resolved Ambient Particles Collected Near the Volcanic Crater of Sakurajima, Japan

  • Ma, Chang-Jin;Kim, Ki-Hyun;Kang, Gong-Unn
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.2
    • /
    • pp.72-79
    • /
    • 2010
  • In this study, the ionic composition of volcanogenically derived particles and their temporal and spatial distributions have been investigated to evaluate the impact of the volcanic eruption on the local ecosystem and residents. To this end, an intensive field study was conducted to measure the size-segregated particulate matters at the east part of Sakurajima in Japan. Fractionated sampling of particles into > $PM_{10}$, $PM_{10-2.5}$, and $PM_{2.5}$ was made by a multi nozzle cascade impactor (MCI). The concentration of various ions present in the size-resolved particles was determined by Ion chromatography. The time dependent 3-dimensional Volcanic Ash Forecast Transport And Dispersion (VAFTAD) model developed by the NOAA Air Resources Laboratory (ARL) indicated that the sampling site of this work was affected by the volcanic aerosol particles plume. The temporal distributions of sulfate and $PM_{2.5}$ during the field campaign were significantly variable with important contributions to particle mass concentration. The chlorine loss, suspected to be caused by acidic components of volcanic gases, occurred predominantly in fine particles smaller than $10\;{\mu}m$.

A Study on Fog Forecasting Method through Data Mining Techniques in Jeju (데이터마이닝 기법들을 통한 제주 안개 예측 방안 연구)

  • Lee, Young-Mi;Bae, Joo-Hyun;Park, Da-Bin
    • Journal of Environmental Science International
    • /
    • v.25 no.4
    • /
    • pp.603-613
    • /
    • 2016
  • Fog may have a significant impact on road conditions. In an attempt to improve fog predictability in Jeju, we conducted machine learning with various data mining techniques such as tree models, conditional inference tree, random forest, multinomial logistic regression, neural network and support vector machine. To validate machine learning models, the results from the simulation was compared with the fog data observed over Jeju(184 ASOS site) and Gosan(185 ASOS site). Predictive rates proposed by six data mining methods are all above 92% at two regions. Additionally, we validated the performance of machine learning models with WRF (weather research and forecasting) model meteorological outputs. We found that it is still not good enough for operational fog forecast. According to the model assesment by metrics from confusion matrix, it can be seen that the fog prediction using neural network is the most effective method.

The Effects of Typhoon Initialization and Dropwindsonde Data Assimilation on Direct and Indirect Heavy Rainfall Simulation in WRF model

  • Lee, Ji-Woo
    • Journal of the Korean earth science society
    • /
    • v.36 no.5
    • /
    • pp.460-475
    • /
    • 2015
  • A number of heavy rainfall events on the Korean Peninsula are indirectly influenced by tropical cyclones (TCs) when they are located in southeastern China. In this study, a heavy rainfall case in the middle Korean region is selected to examine the influence of typhoon simulation performance on predictability of remote rainfall over Korea as well as direct rainfall over Taiwan. Four different numerical experiments are conducted using Weather Research and Forecasting (WRF) model, toggling on and off two different improvements on typhoon in the model initial condition (IC), which are TC bogussing initialization and dropwindsonde observation data assimilation (DA). The Geophysical Fluid Dynamics Laboratory TC initialization algorithm is implemented to generate the bogused vortex instead of the initial typhoon, while the airborne observation obtained from dropwindsonde is applied by WRF Three-dimensional variational data assimilation. Results show that use of both TC initialization and DA improves predictability of TC track as well as rainfall over Korea and Taiwan. Without any of IC improvement usage, the intensity of TC is underestimated during the simulation. Using TC initialization alone improves simulation of direct rainfall but not of indirect rainfall, while using DA alone has a negative impact on the TC track forecast. This study confirms that the well-suited TC simulation over southeastern China improves remote rainfall predictability over Korea as well as TC direct rainfall over Taiwan.

Study on the Flow Characteristics at Natural Curved Channel by 2D and 3D Models (2·3차원 모형을 이용한 자연하도 만곡부에서의 흐름특성 연구)

  • Ahn, Seung-Seop;Jung, Do-Joon;Lee, Sang-Il;Kim, Wi-Seok
    • Journal of Environmental Science International
    • /
    • v.21 no.4
    • /
    • pp.471-478
    • /
    • 2012
  • In this study, the flow characteristic analysis at the curved-channel of the actual channel section is compared and reviewed using the 2D RMA-2 model and the 3D FLOW-3D model. the curve section with curve rate 1.044 in the research section is analyzed applying the frequency of he project flood of 100 years. According to the result, the issue for the application of the FLOW-3D Model's three-dimensional numeric analysis result to the actual river is found to be reviewed with caution. Also, application of the 3D model to the wide basin's flood characteristic is determined to be somewhat risky. But, the applicability to the hydraulic property analysis of a partial channel section and the impact analysis and forecast of hydraulic structure is presumed to be high. In addition, if the parameters to reflect the vegetation of basin and the actual channel, more accurate topological measurement data and the topological data with high closeness to the current status are provided, the result with higher reliability is considered to be drawn.

Effects of Experimental Drought on Soil CO2 Efflux in a Larix Kaempferi Stand

  • Kim, Beomjeong;Yun, Youngjo;Choi, Byoungkoo
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.3
    • /
    • pp.253-257
    • /
    • 2018
  • Climate models forecast more frequent and a longer period of drought events which may impact forest soil carbon dynamics, thereby altering the soil respiration (SR) rate. We examine the simulated drought effects on soil $CO_2$ effluxes from soil surface partitioning heterotrophic and autotrophic soil respiration sources. Three replicates of drought plots ($6{\times}6m$) were constructed with the same size of three control plots. We examined the relation between $CO_2$ and soil temperature and soil moisture, each being measured at a soil depth of 15 cm. We also compared which factor affected $CO_2$ efflux more under drought conditions. Total SR, autotrophic respiration (AR) and heterotrophic respiration (HR) were positively correlated with soil temperature (p < 0.05), and the relationships were stronger in roof plots than in control plots. Total SR, AR, and HR were negatively correlated only in roof plots, and the only HR showed a significant correlation (p < 0.05, r = -0.59). Soil respiration rates were more influenced by soil temperature than by soil moisture, and this relationship was more evident under drought conditions.

Sensitivity of Typhoon Simulation to Physics Parameterizations in the Global Model (전구 모델의 물리과정에 따른 태풍 모의 민감도)

  • Kim, Ki-Byung;Lee, Eun-Hee;Seol, Kyung-Hee
    • Atmosphere
    • /
    • v.27 no.1
    • /
    • pp.17-28
    • /
    • 2017
  • The sensitivity of the typhoon track and intensity simulation to physics schemes of the global model are examined for the typhoon Bolaven and Tembin cases by using the Global/Regional Integrated Model System-Global Model Program (GRIMs-GMP) with the physics package version 2.0 of the Korea Institute of Atmospheric Prediction Systems. Microphysics, Cloudiness, and Planetary boundary Layer (PBL) parameterizations are changed and the impact of each scheme change to typhoon simulation is compared with the control simulation and observation. It is found that change of microphysics scheme from WRF Single-Moment 5-class (WSM5) to 1-class (WSM1) affects to the typhoon simulation significantly, showing the intensified typhoon activity and increased precipitation amount, while the effect of the prognostic cloudiness and PBL enhanced mixing scheme is not noticeable. It appears that WSM1 simulates relatively unstable and drier atmospheric structure than WSM5, which is induced by the latent heat change and the associated radiative effect due to not considering ice cloud. And WSM1 results the enhanced typhoon intensity and heavy rainfall simulation. It suggests that the microphysics is important to improve the capability for typhoon simulation of a global model and to increase the predictability of medium range forecast.

Forecasting the Environmental Change of Technological Innovation System in South Korea in the COVID-19 Era

  • Kim, Youbean;Park, Soyeon;Kwon, Ki-Seok
    • Asian Journal of Innovation and Policy
    • /
    • v.9 no.2
    • /
    • pp.133-144
    • /
    • 2020
  • Korean economy has experienced a very rapid growth largely due to the change of the innovation system since the last half century. The recent outbreak of COVID-19 impacts the global economy as well as Korea's innovation system. In order to understand the influence of the shock to the Korean technological system, we have forecast the future of the system combining qualitative and quantitative techniques such as expert panel, cross impact analysis, and scenario planning. According to the results, we have identified 39 driving forces influencing the change of Korea's technological innovation system. Four scenarios have been suggested based on the predetermined factors and core uncertainties. In other words, uncertainties of emergence of the regions and global value chains generate four scenarios: regional growth, unstable hope, returning to the past, and regional conflicts. The 'regional growth' scenario is regarded as the most preferable, whereas the 'regional conflicts' scenario is unavoidable. In conclusion, we put forward some policy implications to boost the regional innovation system by exploiting the weakened global value chains in order to move on to the most preferable scenario away from the return to the past regime.