• Title/Summary/Keyword: impact force history

Search Result 54, Processing Time 0.025 seconds

Identification of impact forces on composite structures using an inverse approach

  • Hu, Ning;Matsumoto, Satoshi;Nishi, Ryu;Fukunaga, Hisao
    • Structural Engineering and Mechanics
    • /
    • v.27 no.4
    • /
    • pp.409-424
    • /
    • 2007
  • In this paper, an identification method of impact force is proposed for composite structures. In this method, the relation between force histories and strain responses is first formulated. The transfer matrix, which relates the strain responses of sensors and impact force information, is constructed from the finite element method (FEM). Based on this relation, an optimization model to minimize the difference between the measured strain responses and numerically evaluated strain responses is built up to obtain the impact force history. The identification of force history is performed by a modified least-squares method that imposes the penalty on the first-order derivative of the force history. Moreover, from the relation of strain responses and force history, an error vector indicating the force location is defined and used for the force location identification. The above theory has also been extended into the cases when using acceleration information instead of strain information. The validity of the present method has been verified through two experimental examples. The obtained results demonstrate that the present approach works very well, even when the internal damages in composites happen due to impact events. Moreover, this method can be used for the real-time health monitoring of composite structures.

항공기 복합재 구조물의 저속충격 해석방법 분석

  • Choi, Ik-Hyeon
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.213-222
    • /
    • 2003
  • Some analytical methods to analyze low-velocity impact force history of composite laminated structures used in aerospace vehicles are reviewed. A classical method used at initial research of low-velocity impact problem in 1980s was reviewed on its physical meaning, and the approximate method assuming the shape of impact force history as a sinusoidal wave was reviewed. A parametric study on contact constant and exponent in contact law was performed in order to analyze an effect on impact force history, and finally its was understood that impact force history could be analyzed accurately even though the linearized contact law was used. Also, in this paper it was shown that impact problem could be analyzed simply and easily using a commercial finite element code.

  • PDF

Impact force localization for civil infrastructure using augmented Kalman Filter optimization

  • Saleem, Muhammad M.;Jo, Hongki
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.123-139
    • /
    • 2019
  • Impact forces induced by external object collisions can cause serious damages to civil engineering structures. While accurate and prompt identification of such impact forces is a critical task in structural health monitoring, it is not readily feasible for civil structures because the force measurement is extremely challenging and the force location is unpredictable for full-scale field structures. This study proposes a novel approach for identification of impact force including its location and time history using a small number of multi-metric observations. The method combines an augmented Kalman filter (AKF) and Genetic algorithm for accurate identification of impact force. The location of impact force is statistically determined in the way to minimize the AKF response estimate error at measured locations and then time history of the impact force is accurately constructed by optimizing the error co-variances of AKF using Genetic algorithm. The efficacy of proposed approach is numerically demonstrated using a truss and a plate model considering the presence of modelling error and measurement noises.

Impact Force Reconstruction of Composite materials based on Improved Regularization Technology

  • Sun, Yajie;Yin, Tao;Yang, Jian;Cai, Zhiyu;Wu, Shaoen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.2718-2731
    • /
    • 2021
  • In the structural health monitoring of composite materials, in order to solve the ill-posed problem of impact force reconstruction, regularization techniques are often used to deal with it. Due to the poor convergence of the traditional Tikhonov regularization method, in order to accurately reconstruct the time history of the impact force, this paper improves Tikhonov regularization method and constructs homotopy function with strong convergence. Since the optimal regularization parameters need to be found in the homotopy function, the Newton downhill method is used to find the optimal parameters and the homotopy function can be calculated, which can accurately reconstruct the time history of the impact force. In order to verify the universality of the method in this paper, impact hammers of different materials were used in the experiment in this paper to study and compare the reconstruction effect of impact time history of different impact hammers.

Comparative analyses of a shield building subjected to a large commercial aircraft impact between decoupling method and coupling method

  • Han, Pengfei;Liu, Jingbo;Fei, Bigang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.326-342
    • /
    • 2022
  • Comparative analyses of a shield building subjected to a large commercial aircraft impact between decoupling method and coupling method are performed in this paper. The decoupling method is applying impact force time-history curves on impact area of the shield building to study impact damage effects on structure. The coupling method is using a model including aircraft and shield building to perform simulation of the entire impact process. Impact force time-history curves of the fuselage, wing and engine and their total impact force time-history curve are obtained by the entire aircraft normally impacting the rigid wall. Taking aircraft structure and impact progress into account some loading areas are determined to perform some comparative analyses between decoupling method and coupling method, the calculation results including displacement, plastic strain of concrete and stress of steel plate in impact area are given. If the loading area is determined unreasonably, it will be difficult to assess impact damage of impact area even though the accurate impact force of each part of aircraft obtained already. The coupling method presented at last in this paper can more reasonably evaluate the dynamic response of the shield building than the decoupling methods used in the current nuclear engineering design.

Reconstruction of Impact Force produced by the Collision between Two Elastic Structures (탄성구조물의 충돌에 의한 충격력 재현)

  • 조창기;이규섭;류봉조;박영필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.293-296
    • /
    • 2002
  • This work presents the reconstruction of impact force produced by the collision between two elastic structures. The 2-DOF impactor was designed. The shape control of impact farce using correlations of the dynamic characteristics and impact force history between two elastic structures is accomplished. The effects of the relative motion between impactor and elastic structure on the impact force shape are studied. Reconstruction characteristics of impact force in cantilever beam are reviewed.

  • PDF

A Study on the Reconstruction of Impact Force produced by the Collision between Two Elastic Structures (탄성 충돌체간의 충격력 재현에 관한 연구)

  • 조창기;류봉조;이규섭;박영필
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.49-58
    • /
    • 2003
  • In this study, the equation of motion of impacting elastic structures was derived through the theory, and the shape control of impact force using correlations of the dynamic characteristics and impact force history between two elastic structures was accomplished. Through numerical analysis and experiments, the classical contact mechanisms were verified, and the effects of the relative motion between impactor and elastic structure on the impact force shape were studied, and then the shape change of impact force depending on the impact position and mode shape of cantilever beam were analyzed. The 2-DOF impactor was designed and used. Reconstruction characteristics of impact force in cantilever beam were reviewed .

An Experimental Study on Low-Velocity Impact Test and Response of Composite Laminates (복합적층판의 저속충격시험 및 거동에 대한 실험적 연구)

  • 최익현;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.359-371
    • /
    • 1994
  • A drop weight type impact test system is designed and set up to experimentally investigate impact responses of composite laminates subjected to the low-velocity impact. Using the test system, the impact velocity and the rebound velocity of the impactor as well as the impact force history are measured. An error of the measured data due to a difference in measuring position of the sensor is corrected and, for the estimation of real contact force history, a method of correcting an error due to friction forces is developed. Experimental methods to fix the boundary edgy of laminate specimens in impact testing are investigated and the impact tests on the specimens fixed by those methods are performed. Impact force histories and dynamic strains measured from the tests are compared with numerical results from the finite element analysis using the contact law. Consequently, the nonlinear numerical results considering the large deflection effects are agreed with the experimental results better than the linear ones.

Estimation of damage for composite laminates using sound pressure (음압을 이용한 복합 적층판의 손상평가)

  • Kim, Sung-Joon;Lee, Sang-Wook;Chae, Dong-Chul;Kim, Sung-Chan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.503-507
    • /
    • 2004
  • The radiated sound pressure induced by low-velocity impact is obtained by solving the Rayleigh integral equation. This paper established the sound analysis procedure using impact analysis model. For structurally radiated noise, the sound field is directly coupled to the structural motion. Therefore the impact response should be analyzed. The impact response is computed using the spring-mass model. And the influence of damage on the sound pressure and impacted force history of laminated were investigated. The results show that both radiated sound pressure and impact force history are strongly influenced by damage on laminated.

  • PDF

Impact Force Roconstruction and Impact Model Identification Using Inverse Dynamics of an Impacted Beam (역동역학을 이용한 충격을 받는 보의 충격력 복원 및 충격모델의 변수 파악)

  • 박형순;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.623-630
    • /
    • 1995
  • The impulse response functions (force-strain relations) for Euler-Bernoulli and Timoshenko beams are considered. The response of a beam to a transverse impact force is numerically obtained with the convolution approach using the impulse response function obtained by Laplace transform. Using this relation, the impact force history is determined in the time domain and results are compared with those from Hertz's contact law. The parameters of timpact force model are identified using the recovered force and compared with the Hertz's contact model. In order to verify the proposed algorithm, measurements were done using an impact hammer and a steel ball drop test and these results are also compared with the simulated values.