The purpose of this study is to derive service factors based on the "Rail Statistical Yearbook" data of railroad service providers from 1990 to 2019, and to analyze the effect of the service factors on the operating profit ratio(OPR), a representative management performance variable of railroad transport service providers. In particular, it has academic significance in terms of empirical research to evaluate whether the management innovation of the KoRail has changed in line with the purpose of establishing the corporation by dividing the research period into the first period (1990-2003) and the latter (2004-2019). The contents of this study investigated previous studies on the quality of railway passenger transportation service and analyzed the contents of government presentation data related to the management performance evaluation of the KoRail. As an empirical analysis model, a research model was constructed using OPR as a dependent variable and service factor variables of infrastructure, economy, safety, connectivity, and business diversity as explanatory variables based on the operation and management activity information during the analysis period 30 years. On the results of research analysis, OPR is that the infrastructure factor is improved by structural reform or efficiency improvement. And economic factors are the fact that operating profit ratio improves by reducing costs. The safety factor did not reveal the significant explanatory power of the regression coefficient, but the sign of influence was the same as the prediction. Connectivity factor reveals a influence on differences between first period and latter, but OPR impact direction is changed from negative in before to positive in late. This is an evironment in which connectivity is actually realized in later period. On diversity factor, there is no effect of investment share in subsidiaries and government subsidies on OPR.
Kim, Geunah;Youn, Youjeong;Kang, Jonggu;Choi, Soyeon;Park, Ganghyun;Chun, Junghwa;Jang, Keunchang;Won, Myoungsoo;Lee, Yangwon
Korean Journal of Remote Sensing
/
v.38
no.5_1
/
pp.627-646
/
2022
Recently, the seriousness of climate change-related problems caused by global warming is growing, and the average temperature is also rising. As a result, it is affecting the environment in which various temperature-sensitive creatures and creatures live, and changes in the ecosystem are also being detected. Seasons are one of the important factors influencing the types, distribution, and growth characteristics of creatures living in the area. Among the most popular and easily recognized plant seasonal phenomena among the indicators of the climate change impact evaluation, the blooming day of flower and the peak day of autumn leaves were modeled. The types of plants used in the modeling were forsythia and cherry trees, which can be seen as representative plants of spring, and maple and ginkgo, which can be seen as representative plants of autumn. Weather data used to perform modeling were temperature, precipitation, and solar radiation observed through the ASOS Observatory of the Korea Meteorological Administration. As satellite data, MODIS NDVI was used for modeling, and it has a correlation coefficient of about -0.2 for the flowering date and 0.3 for the autumn leaves peak date. As the model used, the model was established using multiple regression models, which are linear models, and Random Forest, which are nonlinear models. In addition, the predicted values estimated by each model were expressed as isopleth maps using spatial interpolation techniques to express the trend of plant seasonal changes from 2003 to 2020. It is believed that using NDVI with high spatio-temporal resolution in the future will increase the accuracy of plant phenology modeling.
Ocean salinity affects ocean circulation on a global scale and low salinity water around coastal areas often has an impact on aquaculture and fisheries. Microwave satellite sensors (e.g., Soil Moisture Active Passive [SMAP]) have provided sea surface salinity (SSS) based on the dielectric characteristics of water associated with SSS and sea surface temperature (SST). In this study, a Light Gradient Boosting Machine (LGBM)-based model for generating high resolution SSS from Geostationary Ocean Color Imager (GOCI) data was proposed, having machine learning-based improved SMAP SSS by Jang et al. (2022) as reference data (SMAP SSS (Jang)). Three schemes with different input variables were tested, and scheme 3 with all variables including Multi-scale Ultra-high Resolution SST yielded the best performance (coefficient of determination = 0.60, root mean square error = 0.91 psu). The proposed LGBM-based GOCI SSS had a similar spatiotemporal pattern with SMAP SSS (Jang), with much higher spatial resolution even in coastal areas, where SMAP SSS (Jang) was not available. In addition, when tested for the great flood occurred in Southern China in August 2020, GOCI SSS well simulated the spatial and temporal change of Changjiang Diluted Water. This research provided a potential that optical satellite data can be used to generate high resolution SSS associated with the improved microwave-based SSS especially in coastal areas.
A delta is a depositional landform that is formed when sediment transported by a river is deposited in a relatively low-energy environment, such as a lake, sea, or a main channel. Among these, a delta formed at the confluence of rivers has a great importance in river management and research because it has a significant impact on the hydraulic and sedimentological characteristics of the river. Recently, the equilibrium state of the confluence area has been disrupted by large-scale dredging and construction of levees in the Nakdong River. However, due to the natural recovery of the river, the confluence area is returning to its pre-dredging natural state through ongoing sedimentation. The time-series data show that the confluence delta has been steadily growing since the dredging, but once it reaches a certain size, it repeats growth and retreat, and the overall size does not change significantly. In this study, we developed a model to explain the sedimentation-erosion processes in the confluence area based on the assumption that the confluence delta reaches a dynamic equilibrium. The model is based on two fundamental principles: sedimentation due to supply from the tributary and erosion due to the main channel. The erosion coefficient that represents the Nakdong River confluence areas, was obtained using data from the tributaries of the Nakdong River. Sensitivity analyses were conducted using the developed model to understand how the confluence delta responds to changes in the sediment and water discharges of the tributary and the main channel, respectively. We then used annual average discharge of the Nakdong River's tributaries to predict the dynamic equilibrium positions of the confluence deltas. Finally, we conducted a simulation experiment on the development of the Gamcheon-Nakdong River delta using recorded daily discharge. The results showed that even though it is a simple model, it accurately predicted the dynamic equilibrium positions of the confluence deltas in the Nakdong River, including the areas where the delta had not formed, and those where the delta had already formed and predicted the trend of the response of the Gamcheon-Nakdong River delta. However, the actual retreat in the Gamcheon-Nakdong River delta was not captured fully due to errors and limitations in the simplification process. The insights through this study provide basic information on the sediment supply of the Nakdong River through the confluence areas, which can be implemented as a basic model for river maintenance and management.
Spatial sampling design plays an important role in GIS-based modeling studies because it increases modeling efficiency while reducing the cost of sampling. In the field of agricultural systems, research demand for high-resolution spatial databased modeling to predict and evaluate climate change impacts is growing rapidly. Accordingly, the need and importance of spatial sampling design are increasing. The purpose of this study was to design spatial sampling of paddy fields (11,386 grids with 1 km spatial resolution) in Korea for use in agricultural spatial modeling. A stratified random sampling design was developed and applied in 2030s, 2050s, and 2080s under two RCP scenarios of 4.5 and 8.5. Twenty-five weather and four soil characteristics were used as stratification variables. Stratification and sample allocation were optimized to ensure minimum sample size under given precision constraints for 16 target variables such as crop yield, greenhouse gas emission, and pest distribution. Precision and accuracy of the sampling were evaluated through sampling simulations based on coefficient of variation (CV) and relative bias, respectively. As a result, the paddy field could be optimized in the range of 5 to 21 strata and 46 to 69 samples. Evaluation results showed that target variables were within precision constraints (CV<0.05 except for crop yield) with low bias values (below 3%). These results can contribute to reducing sampling cost and computation time while having high predictive power. It is expected to be widely used as a representative sample grid in various agriculture spatial modeling studies.
Taeyoon Eom;Kwangnyun Kim;Yonghan Jo;Keunyong Song;Yunjeong Lee;Yun Gon Lee
Korean Journal of Remote Sensing
/
v.39
no.2
/
pp.207-221
/
2023
This study suggests deep neural network models for estimating air temperature with Level 1B (L1B) datasets of GEO-KOMPSAT-2A (GK-2A). The temperature at 1.5 m above the ground impact not only daily life but also weather warnings such as cold and heat waves. There are many studies to assume the air temperature from the land surface temperature (LST) retrieved from satellites because the air temperature has a strong relationship with the LST. However, an algorithm of the LST, Level 2 output of GK-2A, works only clear sky pixels. To overcome the cloud effects, we apply a deep neural network (DNN) model to assume the air temperature with L1B calibrated for radiometric and geometrics from raw satellite data and compare the model with a linear regression model between LST and air temperature. The root mean square errors (RMSE) of the air temperature for model outputs are used to evaluate the model. The number of 95 in-situ air temperature data was 2,496,634 and the ratio of datasets paired with LST and L1B show 42.1% and 98.4%. The training years are 2020 and 2021 and 2022 is used to validate. The DNN model is designed with an input layer taking 16 channels and four hidden fully connected layers to assume an air temperature. As a result of the model using 16 bands of L1B, the DNN with RMSE 2.22℃ showed great performance than the baseline model with RMSE 3.55℃ on clear sky conditions and the total RMSE including overcast samples was 3.33℃. It is suggested that the DNN is able to overcome cloud effects. However, it showed different characteristics in seasonal and hourly analysis and needed to append solar information as inputs to make a general DNN model because the summer and winter seasons showed a low coefficient of determinations with high standard deviations.
In this study, machine learning-based clustering and classification of residential noise in apartment buildings was conducted using frequency and temporal characteristics. First, a residential noise source dataset was constructed . The residential noise source dataset was consisted of floor impact, airborne, plumbing and equipment noise, environmental, and construction noise. The clustering of residential noise was performed by K-Means clustering method. For frequency characteristics, Leq and Lmax values were derived for 1/1 and 1/3 octave band for each sound source. For temporal characteristics, Leq values were derived at every 6 ms through sound pressure level analysis for 5 s. The number of k in K-Means clustering method was determined through the silhouette coefficient and elbow method. The clustering of residential noise source by frequency characteristic resulted in three clusters for both Leq and Lmax analysis. Temporal characteristic clustered residential noise source into 9 clusters for Leq and 11 clusters for Lmax. Clustering by frequency characteristic clustered according to the proportion of low frequency band. Then, to utilize the clustering results, the residential noise source was classified using three kinds of machine learning. The results of the residential noise classification showed the highest accuracy and f1-score for data labeled with Leq values in 1/3 octave bands, and the highest accuracy and f1-score for classifying residential noise sources with an Artificial Neural Network (ANN) model using both frequency and temporal features, with 93 % accuracy and 92 % f1-score.
Customer Relationship Management(CRM) has been a sustainable competitive edge of many companies. CRM analyzes customer data for designing and executing targeted marketing analysing customer behavior in order to make decisions relating to products and services including management information system. It is critical for companies to get and maintain profitable customers. How to manage relationships with customers effectively has become an important issue for both academicians and practitioners in recent years. However, the existing academic literature and the practical applications of customer relationship management(CRM) strategies have been focused on the technical process and organizational structure about the implementation of CRM. These limited focus on CRM lead to the result of numerous reports of failed implementations of various types of CRM projects. Many of these failures are also related to the absence of marketing approach. Identifying successful factors and outcomes focused on marketing concept before introducing a CRM project are a pre-implementation requirements. Many researchers have attempted to find the factors that contribute to the success of CRM. However, these research have some limitations in terms of marketing approach without explaining how the marketing based factors contribute to the CRM success. An understanding of how to manage relationship with crucial customers effectively based marketing approach has become an important topic for both academicians and practitioners. However, the existing papers did not provide a clear antecedent and outcomes factors focused on marketing approach. This paper attempt to validate whether or not such various marketing factors would impact on relational quality and CRM performance in terms of marketing oriented perceptivity. More specifically, marketing oriented factors involving market orientation, customer orientation, customer information orientation, and core customer orientation can influence relationship quality(satisfaction and trust) and CRM outcome(customer retention and customer share). Another major goals of this research are to identify the effect of relationship quality on CRM outcomes consisted of customer retention and share to show the relationship strength between two factors. Based on meta analysis for conventional studies, I can construct the following research model. An empirical study was undertaken to test the hypotheses with data from various companies. Multiple regression analysis and t-test were employed to test the hypotheses. The reliability and validity of our measurements were tested by using Cronbach's alpha coefficient and principal factor analysis respectively, and seven hypotheses were tested through performing correlation test and multiple regression analysis. The first key outcome is a theoretically and empirically sound CRM factors(marketing orientation, customer orientation, customer information orientation, and core customer orientation.) in the perceptive of marketing. The intensification of ${\beta}$coefficient among antecedents factors in terms of marketing was not same. In particular, The effects on customer trust of marketing based CRM antecedents were significantly confirmed excluding core customer orientation. It was notable that the direct effects of core customer orientation on customer trust were not exist. This means that customer trust which is firmly formed by long term tasks will not be directly linked to the core customer orientation. the enduring management concerned with this interactions is probably more important for the successful implementation of CRM. The second key result is that the implementation and operation of successful CRM process in terms of marketing approach have a strong positive association with both relationship quality(customer trust/customer satisfaction) and CRM performance(customer retention and customer possession). The final key fact that relationship quality has a strong positive effect on customer retention and customer share confirms that improvements in customer satisfaction and trust improve accessibility to customers, provide more consistent service and ensure value-for-money within the front office which result in growth of customer retention and customer share. Particularly, customer satisfaction and trust which is main components of relationship quality are found to be positively related to the customer retention and customer share. Interactive managements of these main variables play key roles in connecting the successful antecedent of CRM with final outcome involving customer retention and share. Based on research results, This paper suggest managerial implications concerned with constructions and executions of CRM focusing on the marketing perceptivity. I can conclude in general the CRM can be achieved by the recognition of antecedents and outcomes based on marketing concept. The implementation of marketing concept oriented CRM will be connected with finding out about customers' purchasing habits, opinions and preferences profiling individuals and groups to market more effectively and increase sales changing the way you operate to improve customer service and marketing. Benefiting from CRM is not just a question of investing the right software, but adapt CRM users to the concept of marketing including marketing orientation, customer orientation, and customer information orientation. No one deny that CRM is a process or methodology used to develop stronger relationships being composed of many technological components, but thinking about CRM in primarily technological terms is a big mistake. We can infer from this paper that the more useful way to think and implement about CRM is as a process that will help bring together lots of pieces of marketing concept about customers, marketing effectiveness, and market trends. Finally, a real situation we conducted our research may enable academics and practitioners to understand the antecedents and outcomes in the perceptive of marketing more clearly.
Previous studies have shown that the most important factor affecting customer loyalty in the service industry is service quality. However, on the subject of whether service quality has a direct or indirect effect on customer loyalty, scholars' views apparently vary. Some studies suggest that service quality has a direct and fundamental influence on customer loyalty (Bai and Liu, 2002). However, others have shown that service quality not only directly affects customer loyalty, it also has an indirect impact on customer loyalty by influencing customer satisfaction and perceived value (Cronin, Brady, and Hult, 2000). Currently, there are few domestic articles that specifically address the relationship between service quality and customer loyalty in the mobile communication industry. Moreover, research has studied customer loyalty as a whole variable, rather than breaking it down further into multiple dimensions. Based on this analysis, this paper summarizes previous study results, establishes an effect mechanism model among service quality, customer satisfaction, and customer loyalty in the mobile communication industry, and presents a statistical test on model assumptions by using customer investigation data from Heilongjiang Mobile Company. It provides theoretical guidance for mobile service management based on the discussion of the hypothesis test results. For data collection, the sample comprised mobile users in Harbin city, and the survey was taken by random sampling. Out of a total of 300 questionnaires, 276 (92.9%) were recovered. After excluding invalid questionnaires, 249 remained, for an effective rate of 82.6 percent for the study. Cronbach's ${\alpha}$ coefficient was adapted to assess the scale reliability, and validity testing was conducted on the questionnaire from three aspects: content validity, construct validity. and convergent validity. The study tested for goodness of fit mainly from the absolute and relative fit indexes. From the hypothesis testing results, overall, four assumptions have not been supported. The ultimate affective relationship of service quality, customer satisfaction, and customer loyalty is demonstrated in Figure 2. On the whole, the service quality of the communication industry not only has a direct positive significant effect on customer loyalty, it also has an indirect positive significant effect on customer loyalty through service quality; the affective mechanism and extent of customer loyalty are different, and are influenced by each dimension of service quality. This study used the questionnaires of existing literature from home and abroad and tested them in empirical research, with all questions adapted to seven-point Likert scales. With the SERVQUAL scale of Parasuraman, Zeithaml, and Berry (1988), or PZB, as a reference point, service quality was divided into five dimensions-tangibility, reliability, responsiveness, assurance, and empathy-and the questions were simplified down to nineteen. The measurement of customer satisfaction was based mainly on Fornell (1992) and Wang and Han (2003), ending up with four questions. Based on the study’s three indicators of price tolerance, first choice, and complaint reaction were used to measure attitudinal loyalty, while repurchase intention, recommendation, and reputation measured behavioral loyalty. The collection and collation of literature data produced a model of the relationship among service quality, customer satisfaction, and customer loyalty in mobile communications, and China Mobile in the city of Harbin in Heilongjiang province was used for conducting an empirical test of the model and obtaining some useful conclusions. First, service quality in mobile communication is formed by the five factors mentioned earlier: tangibility, reliability, responsiveness, assurance, and empathy. On the basis of PZB SERVQUAL, the study designed a measurement scale of service quality for the mobile communications industry, and obtained these five factors through exploratory factor analysis. The factors fit basically with the five elements, indicating the concept of five elements of service quality for the mobile communications industry. Second, service quality in mobile communications has both direct and indirect positive effects on attitudinal loyalty, with the indirect effect being produced through the intermediary variable, customer satisfaction. There are also both direct and indirect positive effects on behavioral loyalty, with the indirect effect produced through two intermediary variables: customer satisfaction and attitudinal loyalty. This shows that better service quality and higher customer satisfaction will activate the attitudinal to service providers more active and show loyalty to service providers much easier. In addition, the effect mechanism of all dimensions of service quality on all dimensions of customer loyalty is different. Third, customer satisfaction plays a significant intermediary role among service quality and attitudinal and behavioral loyalty, indicating that improving service quality can boost customer satisfaction and make it easier for satisfied customers to become loyal customers. Moreover, attitudinal loyalty plays a significant intermediary role between service quality and behavioral loyalty, indicating that only attitudinally and behaviorally loyal customers are truly loyal customers. The research conclusions have some indications for Chinese telecom operators and others to upgrade their service quality. Two limitations to the study are also mentioned. First, all data were collected in the Heilongjiang area, so there might be a common method bias that skews the results. Second, the discussion addresses the relationship between service quality and customer loyalty, setting customer satisfaction as mediator, but does not consider other factors, like customer value and consumer features, This research will be continued in the future.
1. Introduction Today Internet is recognized as an important way for the transaction of products and services. According to the data surveyed by the National Statistical Office, the on-line transaction in 2007 for a year, 15.7656 trillion, shows a 17.1%(2.3060 trillion won) increase over last year, of these, the amount of B2C has been increased 12.0%(10.2258 trillion won). Like this, because the entry barrier of on-line market of Korea is low, many retailers could easily enter into the market. So the bigger its scale is, but on the other hand, the tougher its competition is. Particularly due to the Internet and innovation of IT, the existing market has been changed into the perfect competitive market(Srinivasan, Rolph & Kishore, 2002). In the early years of on-line business, they think that the main reason for success is a moderate price, they are awakened to its importance of on-line service quality with tough competition. If it's not sure whether customers can be provided with what they want, they can use the Web sites, perhaps they can trust their products that had been already bought or not, they have a doubt its viability(Parasuraman, Zeithaml & Malhotra, 2005). Customers can directly reserve and issue their air tickets irrespective of place and time at the Web sites of travel agencies or airlines, but its empirical studies about these Web sites for reserving and issuing air tickets are insufficient. Therefore this study goes on for following specific objects. First object is to measure service quality and service recovery of Web sites for reserving and issuing air tickets. Second is to look into whether above on-line service quality and on-line service recovery have an impact on overall service quality. Third is to seek for the relation with overall service quality and customer satisfaction, then this customer satisfaction and loyalty intention. 2. Theoretical Background 2.1 On-line Service Quality Barnes & Vidgen(2000; 2001a; 2001b; 2002) had invented the tool to measure Web sites' quality four times(called WebQual). The WebQual 1.0, Step one invented a measuring item for information quality based on QFD, and this had been verified by students of UK business school. The Web Qual 2.0, Step two invented for interaction quality, and had been judged by customers of on-line bookshop. The WebQual 3.0, Step three invented by consolidating the WebQual 1.0 for information quality and the WebQual2.0 for interactionquality. It includes 3-quality-dimension, information quality, interaction quality, site design, and had been assessed and confirmed by auction sites(e-bay, Amazon, QXL). Furtheron, through the former empirical studies, the authors changed sites quality into usability by judging that usability is a concept how customers interact with or perceive Web sites and It is used widely for accessing Web sites. By this process, WebQual 4.0 was invented, and is consist of 3-quality-dimension; information quality, interaction quality, usability, 22 items. However, because WebQual 4.0 is focusing on technical part, it's usable at the Website's design part, on the other hand, it's not usable at the Web site's pleasant experience part. Parasuraman, Zeithaml & Malhorta(2002; 2005) had invented the measure for measuring on-line service quality in 2002 and 2005. The study in 2002 divided on-line service quality into 5 dimensions. But these were not well-organized, so there needed to be studied again totally. So Parasuraman, Zeithaml & Malhorta(2005) re-worked out the study about on-line service quality measure base on 2002's study and invented E-S-QUAL. After they invented preliminary measure for on-line service quality, they made up a question for customers who had purchased at amazon.com and walmart.com and reassessed this measure. And they perfected an invention of E-S-QUAL consists of 4 dimensions, 22 items of efficiency, system availability, fulfillment, privacy. Efficiency measures assess to sites and usability and others, system availability measures accurate technical function of sites and others, fulfillment measures promptness of delivering products and sufficient goods and others and privacy measures the degree of protection of data about their customers and so on. 2.2 Service Recovery Service industries tend to minimize the losses by coping with service failure promptly. This responses of service providers to service failure mean service recovery(Kelly & Davis, 1994). Bitner(1990) went on his study from customers' view about service providers' behavior for customers to recognize their satisfaction/dissatisfaction at service point. According to them, to manage service failure successfully, exact recognition of service problem, an apology, sufficient description about service failure and some tangible compensation are important. Parasuraman, Zeithaml & Malhorta(2005) approached the service recovery from how to measure, rather than how to manage, and moved to on-line market not to off-line, then invented E-RecS-QUAL which is a measuring tool about on-line service recovery. 2.3 Customer Satisfaction The definition of customer satisfaction can be divided into two points of view. First, they approached customer satisfaction from outcome of comsumer. Howard & Sheth(1969) defined satisfaction as 'a cognitive condition feeling being rewarded properly or improperly for their sacrifice.' and Westbrook & Reilly(1983) also defined customer satisfaction/dissatisfaction as 'a psychological reaction to the behavior pattern of shopping and purchasing, the display condition of retail store, outcome of purchased goods and service as well as whole market.' Second, they approached customer satisfaction from process. Engel & Blackwell(1982) defined satisfaction as 'an assessment of a consistency in chosen alternative proposal and their belief they had with them.' Tse & Wilton(1988) defined customer satisfaction as 'a customers' reaction to discordance between advance expectation and ex post facto outcome.' That is, this point of view that customer satisfaction is process is the important factor that comparing and assessing process what they expect and outcome of consumer. Unlike outcome-oriented approach, process-oriented approach has many advantages. As process-oriented approach deals with customers' whole expenditure experience, it checks up main process by measuring one by one each factor which is essential role at each step. And this approach enables us to check perceptual/psychological process formed customer satisfaction. Because of these advantages, now many studies are adopting this process-oriented approach(Yi, 1995). 2.4 Loyalty Intention Loyalty has been studied by dividing into behavioral approaches, attitudinal approaches and complex approaches(Dekimpe et al., 1997). In the early years of study, they defined loyalty focusing on behavioral concept, behavioral approaches regard customer loyalty as "a tendency to purchase periodically within a certain period of time at specific retail store." But the loyalty of behavioral approaches focuses on only outcome of customer behavior, so there are someone to point the limits that customers' decision-making situation or process were neglected(Enis & Paul, 1970; Raj, 1982; Lee, 2002). So the attitudinal approaches were suggested. The attitudinal approaches consider loyalty contains all the cognitive, emotional, voluntary factors(Oliver, 1997), define the customer loyalty as "friendly behaviors for specific retail stores." However these attitudinal approaches can explain that how the customer loyalty form and change, but cannot say positively whether it is moved to real purchasing in the future or not. This is a kind of shortcoming(Oh, 1995). 3. Research Design 3.1 Research Model Based on the objects of this study, the research model derived is
. 3.2 Hypotheses 3.2.1 The Hypothesis of On-line Service Quality and Overall Service Quality The relation between on-line service quality and overall service quality I-1. Efficiency of on-line service quality may have a significant effect on overall service quality. I-2. System availability of on-line service quality may have a significant effect on overall service quality. I-3. Fulfillment of on-line service quality may have a significant effect on overall service quality. I-4. Privacy of on-line service quality may have a significant effect on overall service quality. 3.2.2 The Hypothesis of On-line Service Recovery and Overall Service Quality The relation between on-line service recovery and overall service quality II-1. Responsiveness of on-line service recovery may have a significant effect on overall service quality. II-2. Compensation of on-line service recovery may have a significant effect on overall service quality. II-3. Contact of on-line service recovery may have a significant effect on overall service quality. 3.2.3 The Hypothesis of Overall Service Quality and Customer Satisfaction The relation between overall service quality and customer satisfaction III-1. Overall service quality may have a significant effect on customer satisfaction. 3.2.4 The Hypothesis of Customer Satisfaction and Loyalty Intention The relation between customer satisfaction and loyalty intention IV-1. Customer satisfaction may have a significant effect on loyalty intention. 3.2.5 The Hypothesis of a Mediation Variable Wolfinbarger & Gilly(2003) and Parasuraman, Zeithaml & Malhotra(2005) had made clear that each dimension of service quality has a significant effect on overall service quality. Add to this, the authors analyzed empirically that each dimension of on-line service quality has a positive effect on customer satisfaction. With that viewpoint, this study would examine if overall service quality mediates between on-line service quality and each dimension of customer satisfaction, keeping on looking into the relation between on-line service quality and overall service quality, overall service quality and customer satisfaction. And as this study understands that each dimension of on-line service recovery also has an effect on overall service quality, this would examine if overall service quality also mediates between on-line service recovery and each dimension of customer satisfaction. Therefore these hypotheses followed are set up to examine if overall service quality plays its role as the mediation variable. The relation between on-line service quality and customer satisfaction V-1. Overall service quality may mediate the effects of efficiency of on-line service quality on customer satisfaction. V-2. Overall service quality may mediate the effects of system availability of on-line service quality on customer satisfaction. V-3. Overall service quality may mediate the effects of fulfillment of on-line service quality on customer satisfaction. V-4. Overall service quality may mediate the effects of privacy of on-line service quality on customer satisfaction. The relation between on-line service recovery and customer satisfaction VI-1. Overall service quality may mediate the effects of responsiveness of on-line service recovery on customer satisfaction. VI-2. Overall service quality may mediate the effects of compensation of on-line service recovery on customer satisfaction. VI-3. Overall service quality may mediate the effects of contact of on-line service recovery on customer satisfaction. 4. Empirical Analysis 4.1 Research design and the characters of data This empirical study aimed at customers who ever purchased air ticket at the Web sites for reservation and issue. Total 430 questionnaires were distributed, and 400 were collected. After surveying with the final questionnaire, the frequency test was performed about variables of sex, age which is demographic factors for analyzing general characters of sample data. Sex of data is consist of 146 of male(42.7%) and 196 of female(57.3%), so portion of female is a little higher. Age is composed of 11 of 10s(3.2%), 199 of 20s(58.2%), 105 of 30s(30.7%), 22 of 40s(6.4%), 5 of 50s(1.5%). The reason that portions of 20s and 30s are higher can be supposed that they use the Internet frequently and purchase air ticket directly. 4.2 Assessment of measuring scales This study used the internal consistency analysis to measure reliability, and then used the Cronbach'$\alpha$ to assess this. As a result of reliability test, Cronbach'$\alpha$ value of every component shows more than 0.6, it is found that reliance of the measured variables are ensured. After reliability test, the explorative factor analysis was performed. the factor sampling was performed by the Principal Component Analysis(PCA), the factor rotation was performed by the Varimax which is good for verifying mutual independence between factors. By the result of the initial factor analysis, items blocking construct validity were removed, and the result of the final factor analysis performed for verifying construct validity is followed above. 4.3 Hypothesis Testing 4.3.1 Hypothesis Testing by the Regression Analysis(SPSS) 4.3.2 Analysis of Mediation Effect To verify mediation effect of overall service quality of and , this study used the phased analysis method proposed by Baron & Kenny(1986) generally used. As
shows, Step 1 and Step 2 are significant, and mediation variable has a significant effect on dependent variables and so does independent variables at Step 3, too. And there needs to prove the partial mediation effect, independent variable's estimate ability at Step 3(Standardized coefficient $\beta$eta : efficiency=.164, system availability=.074, fulfillment=.108, privacy=.107) is smaller than its estimate ability at Step 2(Standardized coefficient $\beta$eta : efficiency=.409, system availability=.227, fulfillment=.386, privacy=.237), so it was proved that overall service quality played a role as the partial mediation between on-line service quality and satisfaction. As
shows, Step 1 and Step 2 are significant, and mediation variable has a significant effect on dependent variables and so does independent variables at Step 3, too. And there needs to prove the partial mediation effect, independent variable's estimate ability at Step 3(Standardized coefficient $\beta$eta : responsiveness=.164, compensation=.117, contact=.113) is smaller than its estimate ability at Step 2(Standardized coefficient $\beta$eta : responsiveness=.409, compensation=.386, contact=.237), so it was proved that overall service quality played a role as the partial mediation between on-line service recovery and satisfaction. Verified results on the basis of empirical analysis are followed. First, as the result of , it shows that all were chosen, so on-line service quality has a positive effect on overall service quality. Especially fulfillment of overall service quality has the most effect, and then efficiency, system availability, privacy in order. Second, as the result of , it shows that all were chosen, so on-line service recovery has a positive effect on overall service quality. Especially responsiveness of overall service quality has the most effect, and then contact, compensation in order. Third, as the result of and , it shows that and all were chosen, so overall service quality has a positive effect on customer satisfaction, customer satisfaction has a positive effect on loyalty intention. Fourth, as the result of and , it shows that and all were chosen, so overall service quality plays a role as the partial mediation between on-line service quality and customer satisfaction, on-line service recovery and customer satisfaction. 5. Conclusion This study measured and analyzed service quality and service recovery of the Web sites that customers made a reservation and issued their air tickets, and by improving customer satisfaction through the result, this study put its final goal to grope how to keep loyalty customers. On the basis of the result of empirical analysis, suggestion points of this study are followed. First, this study regarded E-S-QUAL that measures on-line service quality and E-RecS-QUAL that measures on-line service recovery as variables, so it overcame the limit of existing studies that used modified SERVQUAL to measure service quality of the Web sites. Second, it shows that fulfillment and efficiency of on-line service quality have the most significant effect on overall service quality. Therefore the Web sites of reserving and issuing air tickets should try harder to elevate efficiency and fulfillment. Third, privacy of on-line service quality has the least significant effect on overall service quality, but this may be caused by un-assurance of customers whether the Web sites protect safely their confidential information or not. So they need to notify customers of this fact clearly. Fourth, there are many cases that customers don't recognize the importance of on-line service recovery, but if they would think that On-line service recovery has an effect on customer satisfaction and loyalty intention, as its importance is very significant they should prepare for that. Fifth, because overall service quality has a positive effect on customer satisfaction and loyalty intention, they should try harder to elevate service quality and service recovery of the Web sites of reserving and issuing air tickets to maximize customer satisfaction and to secure loyalty customers. Sixth, it is found that overall service quality plays a role as the partial mediation, but now there are rarely existing studies about this, so there need to be more studies about this.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.