• Title/Summary/Keyword: immune-related genes

Search Result 238, Processing Time 0.028 seconds

Regulation of tumor-associated macrophage (TAM) differentiation by NDRG2 expression in breast cancer cells

  • Lee, Soyeon;Lee, Aram;Lim, Jihyun;Lim, Jong-Seok
    • BMB Reports
    • /
    • v.55 no.2
    • /
    • pp.81-86
    • /
    • 2022
  • Macrophages are a major cellular component of innate immunity and are mainly known to have phagocytic activity. In the tumor microenvironment (TME), they can be differentiated into tumor-associated macrophages (TAMs). As the most abundant immune cells in the TME, TAMs promote tumor progression by enhancing angiogenesis, suppressing T cells and increasing immunosuppressive cytokine production. N-myc downstream-regulated gene 2 (NDRG2) is a tumor suppressor gene, whose expression is down-regulated in various cancers. However, the effect of NDRG2 on the differentiation of macrophages into TAMs in breast cancer remains elusive. In this study, we investigated the effect of NDRG2 expression in breast cancer cells on the differentiation of macrophages into TAMs. Compared to tumor cell-conditioned medium (TCCM) from 4T1-mock cells, TCCM from NDRG2-over-expressing 4T1 mouse breast cancer cells did not significantly change the morphology of RAW 264.7 cells. However, TCCM from 4T1-NDRG2 cells reduced the mRNA levels of TAM-related genes, including MR1, IL-10, ARG1 and iNOS, in RAW 264.7 cells. In addition, TCCM from 4T1-NDRG2 cells reduced the expression of TAM-related surface markers, such as CD206, in peritoneal macrophages (PEM). The mRNA expression of TAM-related genes, including IL-10, YM1, FIZZ1, MR1, ARG1 and iNOS, was also downregulated by TCCM from 4T1-NDRG2 cells. Remarkably, TCCM from 4T1-NDRG2 cells reduced the expression of PD-L1 and Fra-1 as well as the production of GM-CSF, IL-10 and ROS, leading to the attenuation of T cell-inhibitory activity of PEM. These data showed that compared with TCCM from 4T1-mock cells, TCCM from 4T1-NDRG2 cells suppressed the TAM differentiation and activation. Collectively, these results suggest that NDRG2 expression in breast cancer may reduce the differentiation of macrophages into TAMs in the TME.

Anti-inflammatory Effects of Various Mushrooms in LPS-stimulated RAW264.7 Cells

  • Seo, Kyung Hye;Park, Jeong-Yong;Noh, Hyung-Jun;Lee, Ji Yeon;Lee, Eun Young;Han, Jae-Gu;Kim, Jin Hyo;Cheong, Mi Sun
    • Korean Journal of Plant Resources
    • /
    • v.31 no.5
    • /
    • pp.478-488
    • /
    • 2018
  • Mushrooms have been widely cultivated and consumed as foods and herbal medicines owing to their various biological properties. However, few studies have evaluated the anti-inflammatory effects of mushrooms. Here, we investigated the effects of mushroom extracts (MEs) on lipopolysaccharide (LPS)-induced inflammation in macrophages (RAW264.7 cells). First, we extracted MEs with either water or ethanol. Using LPS-treated RAW264.7 cells, we measured cell proliferation and NO production. Gene expression of tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), interleukin (IL)-6 (IL-6), and $IL-1{\beta}$ was assessed by RT-PCR, and protein abundance of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) and phosphorylation of p65 were determined by immunoblotting. MEs prepared using both water and ethanol inhibited LPS-induced inflammation in RAW264.7 cells. Nitric oxide (NO) levels induced by LPS were reduced by treatment with MEs. Isaria japonica Yasuda water extracts and Umbilicaria esculenta (Miyoshi) Minks ethanol extracts significantly decreased the mRNA expression of inflammation-related cytokine genes including $TNF-{\alpha}$, IL-6, and $IL-1{\beta}$. Similarly, the protein abundance of iNOS and COX-2 was also decreased. The phosphorylation of p65, a subunit of nuclear $factor-{\kappa}B$ was at least partly suppressed by MEs. This study suggests that mushrooms could be included in the diet to prevent and treat macrophage-related chronic immune diseases.

Difference of gut microbiota composition based on the body condition scores in dogs

  • Chun, Ju Lan;Ji, Sang Yun;Lee, Sung Dae;Lee, Yoo Kyung;Kim, Byeonghyeon;Kim, Ki Hyun
    • Journal of Animal Science and Technology
    • /
    • v.62 no.2
    • /
    • pp.239-246
    • /
    • 2020
  • Microorganism residing in the gut has been known to have important roles in the animal body. Microbes and host microenvironment are highly related with host's health including energy metabolism and immune system. Moreover, it reported that gut microbiome is correlated with diseases like obesity in human and dogs. There have been many studies to identify and characterize microbes and their genes in human body. However, there was little information of microbiome in companion animals. Here, we investigated microbiota communities in feaces from twenty - four Beagles (aged 2 years old) and analyzed the taxonomy profile using metagenomics to study the difference among gut microbiome based on body condition score (BCS). gDNA was isolated from feaces, sequenced and clustered. Taxonomy profiling was performed based on the NCBI database. BCS was evaluated once a week according to the description provided by World Small Animal Veterinary Association. Firmicutes phylum was the most abundant followed by Bacteroidetes, Fusobacteria, Proteobacteria and Actinobacteria. That main microbiota in gut were differently distributed based on the BCS. Fusobacteria has been known to be associated with colon cancer in human. Interestingly, Fusobacteria was in the third level from the top in healthy dog's gut microbiome. In addition, Fusobacteria was especially higher in overweight dogs which had 6 scales of BCS. Species Fusobacterium perfoetens was also more abundant when dogs were in BCS 6. It implied that F. perfoetens would be positively related with overweight in dogs. These finding would contribute to further studies of gut microbiome and their functions to improve dog's diets and health condition.

Immunomodulatory Effects of β-sitosterol and Daucosterol Isolated from Dioscorea batatas on LPS-stimulated RAW 264.7 and TK-1 Cells (산약에서 분리한 β-sitosterol과 daucosterol의 RAW 264.7 세포와 TK-1 세포에서의 면역 활성 조절 효능)

  • Park, Min-Kyung;Cho, Sehee;Ahn, Tae-Kyu;Kim, Do-Hyun;Kim, So-Yeon;Lee, Jin-Wook;Kim, Jee-In;Seo, Eul-Won;Son, Kun-Ho;Lim, Jae-Hwan
    • Journal of Life Science
    • /
    • v.30 no.4
    • /
    • pp.359-369
    • /
    • 2020
  • Although many studies on immune modulatory materials have used RAW 264.7 cells, few have used T cell-derived TK-1 cell lines. Moreover, although some studies have investigated the efficacy of plant-derived β-sitosterol, few have examined the immunomodulatory activity of its analogue, daucosterol. In this study, β-sitosterol and daucosterol were isolated from D. batatas and identified by nuclear magnetic resonance spectroscopy. To evaluate the immune-enhancing or inhibitory effects of the isolated phytosterols, the expression levels of the inflammatory response genes COX-2, TNF-α, IL-6, and iNOS were analyzed by RT-PCR. The relative expression levels of TNF-α and iNOS in RAW 264.7 cells were increased more than threefold with β-sitosterol treatment comparing to those of untreated control. In the case of TK-1 cells, the expression level of TNF-α was decreased and the expression level of iNOS was increased in a β-sitosterol concentration-dependent manner. The expression levels of COX-2, TNF-α, and IL-6 increased by approximately 0.7-1.2 times in RAW 264.7 cells treated with daucosterol compared to those of untreated control, but iNOS expression decreased by 0.8-0.18 times. In the case of daucosterol-treated TK-1 cells, the expression levels of TNF-α, IL-6, and iNOS were markedly reduced from those of TK-1 cells treated only with lipopolysaccaride. As a conclusion, β-sitosterol treatment increased TNF-α and iNOS expression levels in RAW 264.7 cells, thus exerting an immune- boosting effect. However, in TK-1 cells, iNOS expression increased while TNF-α expression decreased, indicating an immunosuppressive activity of β-sitosterol. Daucosterol appears to exert an immunosuppressive effect in both macrophages and T cell lines by inhibiting iNOS expression in RAW 264.7 cells and greatly inhibiting the expression of TNF-α, IL-6, and iNOS in TK-1 cells.

Pathogen Associated Molecular Pattern (PAMP)-Triggered Immunity Is Compromised under C-Limited Growth

  • Park, Hyeong Cheol;Lee, Shinyoung;Park, Bokyung;Choi, Wonkyun;Kim, Chanmin;Lee, Sanghun;Chung, Woo Sik;Lee, Sang Yeol;Sabir, Jamal;Bressan, Ray A.;Bohnert, Hans J.;Mengiste, Tesfaye;Yun, Dae-Jin
    • Molecules and Cells
    • /
    • v.38 no.1
    • /
    • pp.40-50
    • /
    • 2015
  • In the interaction between plants and pathogens, carbon (C) resources provide energy and C skeletons to maintain, among many functions, the plant immune system. However, variations in C availability on pathogen associated molecular pattern (PAMP) triggered immunity (PTI) have not been systematically examined. Here, three types of starch mutants with enhanced susceptibility to Pseudomonas syringae pv. tomato DC3000 hrcC were examined for PTI. In a dark period-dependent manner, the mutants showed compromised induction of a PTI marker, and callose accumulation in response to the bacterial PAMP flagellin, flg22. In combination with weakened PTI responses in wild type by inhibition of the TCA cycle, the experiments determined the necessity of C-derived energy in establishing PTI. Global gene expression analyses identified flg22 responsive genes displaying C supply-dependent patterns. Nutrient recycling-related genes were regulated similarly by C-limitation and flg22, indicating re-arrangements of expression programs to redirect resources that establish or strengthen PTI. Ethylene and NAC transcription factors appear to play roles in these processes. Under C-limitation, PTI appears compromised based on suppression of genes required for continued biosynthetic capacity and defenses through flg22. Our results provide a foundation for the intuitive perception of the interplay between plant nutrition status and pathogen defense.

Association Between HLA-DQ Genotypes and Haplotypes vs Helicobacter pylori Infection in an Indonesian Population

  • Zhao, Yang;Wang, Jingwen;Tanaka, Tsutomu;Hosono, Akihiro;Ando, Ryosuke;Soeripto, Soeripto;Triningsih, F.X. Ediati;Triono, Tegu;Sumoharjo, Suwignyo;Astuti, E.Y. Wenny;Gunawan, Stephanus;Tokudome, Shinkan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1247-1251
    • /
    • 2012
  • Background: Helicobacter pylori is an important gastrointestinal pathogen related to the development of not only atrophic gastritis and peptic ulcer, but also gastric cancer. Human leukocyte antigens (HLA) may play particular roles in host immune responses to bacterial antigens. This study aimed to investigate the association between HLA-DQA1 and DQB1 genotypes and haplotypes vs H. pylori infection in an Indonesian population. Methods: We selected 294 healthy participants in Mataram, Lombok Island, Indonesia. H. pylori infection was determined by urea breath test (UBT). We analyzed HLA-DQA1 and DQB1 genotypes by PCR-RFLP and constructed haplotypes of HLA-DQA1 and DQB1 genes. Multiple comparisons were conducted according to the Bonferroni method. Results: The H. pylori infection rate was 11.2% in this Indonesian population. The DQB1*0401 genotype was noted to be associated with a high risk of H. pylori infection, compared with the DQB1*0301 genotype. None of the HLA-DQA1 or DQB1 haplotypes were related to the risk of H. pylori infection. Conclusions: The study suggests that HLADQB1 genes play important roles in H. pylori infection, but there was no statistically significant association between HLA-DQA1 or DQB1 haplotypes and H.pylori infection in our Lombok Indonesian population.

Lactic Acid Bacteria Improves Peyer's Patch Cell-Mediated Immunoglobulin A and Tight-Junction Expression in a Destructed Gut Microbial Environment

  • Kim, Sung Hwan;Jeung, Woonhee;Choi, Il-Dong;Jeong, Ji-Woong;Lee, Dong Eun;Huh, Chul-Sung;Kim, Geun-Bae;Hong, Seong Soo;Shim, Jae-Jung;Lee, Jung Lyoul;Sim, Jae-Hun;Ahn, Young-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.1035-1045
    • /
    • 2016
  • To evaluate the effects of lactic acid bacteria (LAB) on Peyer's patch cells, mice were treated with a high dose of kanamycin to disturb the gut microbial environment. The overarching goal was to explore the potential of LAB for use as a dietary probiotic that buffers the negative consequences of antibiotic treatment. In vitro, LAB stimulated the production of immunoglobulin A (IgA) from isolated Peyer's patch cells. Inflammation-related genes (TNF-α, IL-1β, and IL-8) were up-regulated in Caco-2 cells stimulated with lipopolysaccharide (LPS), while tight-junction-related genes (ZO-1 and occludin) were down-regulated; the effects of LPS on inflammatory gene and tight-junction gene expression were reversed by treatment with LAB. Mice treated with a high dose of kanamycin showed increased serum IgE levels and decreases in serum IgA and fecal IgA levels; the number of Peyer's patch cells decreased with kanamycin treatment. However, subsequent LAB treatment was effective in reducing the serum IgE level and recovering the serum IgA and fecal IgA levels, as well as the number of Peyer's patch cells. In addition, ZO-1 and occludin mRNA levels were up-regulated in the ileum tissues of mice receiving LAB treatment. Lactic acid bacteria can enhance the intestinal immune system by improving the integrity of the intestinal barrier and increasing the production of IgA in Peyer's patches. Lactic acid bacteria should be considered a potential probiotic candidate for improving intestinal immunity, particularly in mitigating the negative consequences of antibiotic use.

Effects of dietary supplementation with Taiwanese tea byproducts and probiotics on growth performance, lipid metabolism, and the immune response in red feather native chickens

  • Chen, L.W.;Chuang, W.Y.;Hsieh, Y.C.;Lin, H.H.;Lin, W.C.;Lin, L.J.;Chang, S.C.;Lee, T.T.
    • Animal Bioscience
    • /
    • v.34 no.3_spc
    • /
    • pp.393-404
    • /
    • 2021
  • Objective: This study compared the catechin composition of different tea byproducts and investigated the effects of dietary supplementation with green tea byproducts on the accumulation of abdominal fat, the modulation of lipid metabolism, and the inflammatory response in red feather native chickens. Methods: Bioactive compounds were detected, and in vitro anti-obesity capacity analyzed via 3T3-L1 preadipocytes. In animal experiments, 320 one-day-old red feather native chickens were divided into 4 treatment groups: control, basal diet supplemented with 0.5% Jinxuan byproduct (JBP), basal diet supplemented with 1% JBP, or basal diet supplemented with 5×106 colony-forming unit (CFU)/kg Bacillus amyloliquefaciens+5×106 CFU/kg Saccharomyces cerevisiae (BA+SC). Growth performance, serum characteristics, carcass characteristics, and the mRNA expression of selected genes were measured. Results: This study compared several cultivars of tea, but Jinxuan showed the highest levels of the anti-obesity compound epigallocatechin gallate. 3T3-L1 preadipocytes treated with Jinxuan extract significantly reduced lipid accumulation. There were no significant differences in growth performance, serum characteristics, or carcass characteristics among the groups. However, in the 0.5% JBP group, mRNA expression of fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC) were significantly decreased. In the 1% JBP group, FAS, ACC and peroxisome proliferator-activated receptor γ levels were significantly decreased. Moreover, inflammation-related mRNA expression levels were decreased by the addition of JBP. Conclusion: JBP contained abundant catechins and related bioactive compounds, which reduced lipid accumulation in 3T3-L1 preadipocytes, however there was no significant reduction in abdominal fat. This may be due to a lack of active anti-obesity compounds or because the major changes in fat metabolism were not in the abdomen. Nonetheless, lipogenesis-related and inflammation-related mRNA expression were reduced in the 1% JBP group. In addition, dietary supplementation with tea byproducts could reduce the massive amount of byproducts created during tea production and modulate lipid metabolism and the inflammatory response in chickens.

Genetic Variants in Interleukin-2 and Risk of Lymphoma among Children in Korea

  • Song, Nan;Han, So-Hee;Lee, Kyoung-Mu;Choi, Ji-Yeob;Park, Sue-K;Jeon, Su-Jee;Lee, Yun-Hee;Ahn, Hyo-Seop;Shin, Hee-Young;Kang, Hyoung-Jin;Koo, Hong-Hoe;Seo, Jong-Jin;Choi, Ji-Eun;Kang, Dae-Hee
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.2
    • /
    • pp.621-623
    • /
    • 2012
  • To estimate the genetic susceptibility for childhood lymphoma, we conducted an association study for 23 cases and 148 controls. Total 1536 tag single nucleotide polymorphisms (SNPs) were selected in 138 candidate gene regions related to immune responses, apoptosis, the cell cycle, and DNA repair. Twelve SNPs were significantly associated with the risk of lymphoma ($P_{trend}$ <0.05) in six genes ($IL1RN$, $IL2$, $IL12RB1$, $JAK3$, $TNFRSF13B$, and $XRCC3$). The most significant association was seen for $IL2$ variant rs2069762 ($OR_{TG+GG}$ vs. TT=3.43 (1.29-9.11), $P_{trend}$=0.002, min$P$=0.005). These findings suggest that common genetic variants in $IL2$ might play a role in the pathogenesis of childhood lymphoma.

Human Embryonic Stem Cells - a Potential Vaccine for Ovarian Cancer

  • Zhang, Zu-Juan;Chen, Xin-Hua;Chang, Xiao-Hong;Ye, Xue;Li, Yi;Cui, Heng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4295-4300
    • /
    • 2012
  • Objective: To investigate the therapeutic potential of human embryonic stem cells (hESCs) as a vaccine to induce an immune response and provide antitumor protection in a rat model. Methods: Cross-reactivity of antigens between hESCs and tumour cells was screened by immunohistochemistry. Fischer 344 rats were divided into 7 groups, with 6 rats in each, immunized with: Group 1, hESC; Group 2, pre-inactivated mitotic NuTu-19; Group 3 PBS; Group 4, hESC; Group 5, pre-inactivated mitotic NuTu-19; Group 6, PBS; Group 7, hESC only. At 1 (Groups 1-3) or 4 weeks (Groups 4-6) after the last vaccination, each rat was challenged intraperitoneally with NuTu-19. Tumor growth and animal survival were closely monitored. Rats immunized with H9 and NuTu-19 were tested by Western blot analysis of rat orbital venous blood for cytokines produced by Th1 and Th2 cells. Results: hESCs presented tumour antigens, markers, and genes related to tumour growth, metastasis, and signal pathway interactions. The vaccine administered to rats in Group 1 led to significant antitumor responses and enhanced tumor rejection in rats with intraperitoneal inoculation of NuTu-19 cells compared to control groups. In contrast, rats in Group 4 did not display any elevation of antitumour responses. Western blot analysis found cross-reactivity among antibodies generated between H9 and NuTu-19. However, the cytokines did not show significant differences, and no side effects were detected. Conclusion: hESC-based vaccination is a promising modality for immunotherapy of ovarian cancer.