• Title/Summary/Keyword: immune-related gene

Search Result 237, Processing Time 0.032 seconds

Short and long-term immune effects of Poly (I:C) in kidney of Olive flounder (Paralichthys olivaceus) (넙치(Paralichthys olivaceus) 신장에서 Poly (I:C)의 단기 및 장기적인 면역 효과)

  • Minjae Seong;Youngjin Park
    • Journal of fish pathology
    • /
    • v.37 no.1
    • /
    • pp.123-132
    • /
    • 2024
  • Viral diseases cause enormous economic losses to the olive flounder (Paralichthys olivaceus) aquaculture industry in Korea. This study aimed to identify immune-related genes expressed in the kidney of olive flounder injected with Polyinosinic-polycytidylic acid (Poly (I:C)). Thirty fish were divided into two groups by intraperitoneal injection of 100µl of diethylpyrocarbonate-treated water or poly I:C per fish. Kidney tissues at day 3 and 30 after the injection were used for RNA-seq analysis to identify differentially expressed genes (DEGs). Poly I:C group upregulated il8, cfh, tnfaip2b, c3b.2, ly6d and cd38 genes at 3 days post-injection. Additionally, cd22, ccl34a.3, c9, cxcl19, ccl27a, ccl7, and cfh genes were upregulated at 30 days post-injection. Differential expression gene analysis showed that poly I:C has both short and long-term immune effects in olive flounder. This study provides a theoretical basis for understanding the molecular mechanism of the short and long-term immune effects of poly I:C.

Evaluation and interpretation of transcriptome data underlying heterogeneous chronic obstructive pulmonary disease

  • Ham, Seokjin;Oh, Yeon-Mok;Roh, Tae-Young
    • Genomics & Informatics
    • /
    • v.17 no.1
    • /
    • pp.2.1-2.12
    • /
    • 2019
  • Chronic obstructive pulmonary disease (COPD) is a type of progressive lung disease, featured by airflow obstruction. Recently, a comprehensive analysis of the transcriptome in lung tissue of COPD patients was performed, but the heterogeneity of the sample was not seriously considered in characterizing the mechanistic dysregulation of COPD. Here, we established a new transcriptome analysis pipeline using a deconvolution process to reduce the heterogeneity and clearly identified that these transcriptome data originated from the mild or moderate stage of COPD patients. Differentially expressed or co-expressed genes in the protein interaction subnetworks were linked with mitochondrial dysfunction and the immune response, as expected. Computational protein localization prediction revealed that 19 proteins showing changes in subcellular localization were mostly related to mitochondria, suggesting that mislocalization of mitochondria-targeting proteins plays an important role in COPD pathology. Our extensive evaluation of COPD transcriptome data could provide guidelines for analyzing heterogeneous gene expression profiles and classifying potential candidate genes that are responsible for the pathogenesis of COPD.

The role of RNA epigenetic modification-related genes in the immune response of cattle to mastitis induced by Staphylococcus aureus

  • Yue Xing;Yongjie Tang;Quanzhen Chen;Siqian Chen;Wenlong Li;Siyuan Mi;Ying Yu
    • Animal Bioscience
    • /
    • v.37 no.7
    • /
    • pp.1141-1155
    • /
    • 2024
  • Objective: RNA epigenetic modifications play an important role in regulating immune response of mammals. Bovine mastitis induced by Staphylococcus aureus (S. aureus) is a threat to the health of dairy cattle. There are numerous RNA modifications, and how these modification-associated enzymes systematically coordinate their immunomodulatory effects during bovine mastitis is not well reported. Therefore, the role of common RNA modification-related genes (RMRGs) in bovine S. aureus mastitis was investigated in this study. Methods: In total, 80 RMRGs were selected for this study. Four public RNA-seq data sets about bovine S. aureus mastitis were collected and one additional RNA-seq data set was generated by this study. Firstly, quantitative trait locus (QTL) database, transcriptome-wide association studies (TWAS) database and differential expression analyses were employed to characterize the potential functions of selected enzyme genes in bovine S. aureus mastitis. Correlation analysis and weighted gene co-expression network analysis (WGCNA) were used to further investigate the relationships of RMRGs from different types at the mRNA expression level. Interference experiments targeting the m6 A demethylase FTO and utilizing public MeRIP-seq dataset from bovine Mac-T cells were used to investigate the potential interaction mechanisms among various RNA modifications. Results: Bovine QTL and TWAS database in cattle revealed associations between RMRGs and immune-related complex traits. S. aureus challenged and control groups were effectively distinguished by principal component analysis based on the expression of selected RMRGs. WGCNA and correlation analysis identified modules grouping different RMRGs, with highly correlated mRNA expression. The m6 A modification gene FTO showed significant effects on the expression of m6 A and other RMRGs (such as NSUN2, CPSF2, and METTLE), indicating complex co-expression relationships among different RNA modifications in the regulation of bovine S. aureus mastitis. Conclusion: RNA epigenetic modification genes play important immunoregulatory roles in bovine S. aureus mastitis, and there are extensive interactions of mRNA expression among different RMRGs. It is necessary to investigate the interactions between RNA modification genes regulating complex traits in the future.

Production of IL-1β and Inflammasome with Up-Regulated Expressions of NOD-Like Receptor Related Genes in Toxoplasma gondii-Infected THP-1 Macrophages

  • Chu, Jia-Qi;Shi, Ge;Fan, Yi-Ming;Choi, In-Wook;Cha, Guang-Ho;Zhou, Yu;Lee, Young-Ha;Quan, Juan-Hua
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.6
    • /
    • pp.711-717
    • /
    • 2016
  • Toxoplasma gondii is an obligate intracellular parasite that stimulates production of high levels of proinflammatory cytokines, which are important for innate immunity. NLRs, i.e., nucleotide-binding oligomerization domain (NOD)-like receptors, play a crucial role as innate immune sensors and form multiprotein complexes called inflammasomes, which mediate caspase-1-dependent processing of $pro-IL-1{\beta}$. To elucidate the role of inflammasome components in T. gondiiinfected THP-1 macrophages, we examined inflammasome-related gene expression and mechanisms of inflammasome-regulated cytokine $IL-1{\beta}$ secretion. The results revealed a significant upregulation of $IL-1{\beta}$ after T. gondii infection. T. gondii infection also upregulated the expression of inflammasome sensors, including NLRP1, NLRP3, NLRC4, NLRP6, NLRP8, NLRP13, AIM2, and NAIP, in a time-dependent manner. The infection also upregulated inflammasome adaptor protein ASC and caspase-1 mRNA levels. From this study, we newly found that T. gondii infection regulates NLRC4, NLRP6, NLRP8, NLRP13, AIM2, and neuronal apoptosis inhibitor protein (NAIP) gene expressions in THP-1 macrophages and that the role of the inflammasome-related genes may be critical for mediating the innate immune responses to T. gondii infection.

Molecular Cloning of the Bombyx Ubiquitin Holmologue Gene That Is Up-regulated Upon Infection

  • Yun, Eun-Young;Goo, Tae-Won;Hwang, Jae-Sam;Kang, Seok-Woo;Park, Soo-Jung;Kwon, O-Yu
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.2 no.1
    • /
    • pp.61-64
    • /
    • 2001
  • Ubiquitin can be covalently attached to cellular proteins as a post-translational modification rind is involved in metabolic stresses, such as bent shock and immune response. We have isolated and sequenced a cDNA encoding ubiquitin from the silkworm, Bombyx mori. The insert in the clone is 533 nucleotide long with an open reading frame of 387 nucleotides that encodes a protein of 129 amino acids with a molecular weight of 14.8 kDa. The amino acid sequence shared high homology with the ubiquitins known so far, The result of dot blot hybridization showed that the B. mori ubiquitin gene is up-regulated upon f. rofi infection, suggesting that the B. mori ubiquitin plays an immune-related role.

  • PDF

Environmental Pollution and Gene Expression: Dioxin

  • Kim, Ki-Nam;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.2
    • /
    • pp.78-86
    • /
    • 2005
  • Dioxins, especially 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin (TCDD or dioxin), are ubiquitous environmental contaminants. TCDD is known that it has toxic effects in animals and humans, including chloracne, immune, reproductive and developmental toxicities, carcinogenicity, wasting syndrome and death. TCDD induces a broad spectrum of biological responses, including disruption of normal hormone signaling pathways, reproductive and developmental defects, immunotoxicity, liver damage, wasting syndrome and cancer. Many researches showed that TCDD induces gene expression of transcriptional factors related cell proliferation, signal transduction, immune system and cell cycle arrest at molecular and cellular levels. These toxic actions of TCDD are usually mediated with AhR (receptor, resulted from cell culture, animal and clinical studies). cDNA microarray can be used as a highly sensitive and informative marker for toxicity. Additionally, microarray analysis of dioxin-toxicity is able to provide an opportunity for the development of candidate bridging biomarkers of dioxin-toxicity. Through microarray technology, it is possible to understand the therapeutic effects of agonists within the context of toxic effects, classify new chemicals as to their complete effects on biological systems, and identify environmental factors that may influence safety.

Nitric Oxide Dependency in Inflammatory Response-related Gene Transcripts Expressed in Lipopolysaccharide-treated RAW 264.7 Cells

  • Pie, Jae-Eun;Yi, Hyeon-Gyu
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.4
    • /
    • pp.354-363
    • /
    • 2009
  • Cytotoxic Nitric oxide (NO) overproduced by inducible NO Synthase (iNOS or NOS2), which was induced in inflammatory reactions and immune responses directly or indirectly affects the functions as host defense and can cause normal tissue damage. Microarray analysis was performed to identify gene profiles of both NO-dependent and -independent transcripts in RAW 264.7 macrophages that use selective NOS2 inhibitors aminoguanidine ($100\;{\mu}M$) and L-canavanine (1 mM). A total of 3,297 genes were identified that were up- or down-regulated significantly over 2-fold in lipopolysaccharide (LPS)-treated macrophages. NO-dependency was determined in the expressed total gene profiles and also within inflammatory conditions-related functional categories. Out of all the gene profiles, 1711 genes affected NO-dependently and -independently in 567 genes. In the categories of inflammatory conditions, transcripts of 16 genes (Pomp, C8a, Ifih1, Irak1, Txnrd1, Ptafr, Scube1, Cd8a, Gpx4, Ltb, Fasl, Igk-V21-9, Vac14, Mbl1, C1r and Tlr6) and 29 geneas (IL-1beta, Mpa2l, IFN activated genes and Chemokine ligands) affected NO-dependently and -independently, respectively. This NO dependency can be applied to inflammatory reaction-related functional classifications, such as cell migration, chemotaxis, cytokine, Jak/STAT signaling pathway, and MAPK signaling pathway. Our results suggest that LPS-induced gene transcripts in inflammation or infection can be classified into physiological and toxic effects by their dependency on the NOS2-mediated NO release.

Analysis of miRNA expression in the trachea of Ri chicken infected with the highly pathogenic avian influenza H5N1 virus

  • Suyeon Kang;Thi Hao Vu;Jubi Heo;Chaeeun Kim;Hyun S. Lillehoj;Yeong Ho Hong
    • Journal of Veterinary Science
    • /
    • v.24 no.5
    • /
    • pp.73.1-73.16
    • /
    • 2023
  • Background: Highly pathogenic avian influenza virus (HPAIV) is considered a global threat to both human health and the poultry industry. MicroRNAs (miRNA) can modulate the immune system by affecting gene expression patterns in HPAIV-infected chickens. Objectives: To gain further insights into the role of miRNAs in immune responses against H5N1 infection, as well as the development of strategies for breeding disease-resistant chickens, we characterized miRNA expression patterns in tracheal tissues from H5N1-infected Ri chickens. Methods: miRNAs expression was analyzed from two H5N1-infected Ri chicken lines using small RNA sequencing. The target genes of differentially expressed (DE) miRNAs were predicted using miRDB. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis were then conducted. Furthermore, using quantitative real-time polymerase chain reaction, we validated the expression levels of DE miRNAs (miR-22-3p, miR-146b-3p, miR27b-3p, miR-128-3p, miR-2188-5p, miR-451, miR-205a, miR-203a, miR-21-3p, and miR-200a3p) from all comparisons and their immune-related target genes. Results: A total of 53 miRNAs were significantly expressed in the infection samples of the resistant compared to the susceptible line. Network analyses between the DE miRNAs and target genes revealed that DE miRNAs may regulate the expression of target genes involved in the transforming growth factor-beta, mitogen-activated protein kinase, and Toll-like receptor signaling pathways, all of which are related to influenza A virus progression. Conclusions: Collectively, our results provided novel insights into the miRNA expression patterns of tracheal tissues from H5N1-infected Ri chickens. More importantly, our findings offer insights into the relationship between miRNA and immune-related target genes and the role of miRNA in HPAIV infections in chickens.

DNA Microarrays Analysis of Gene Expression Profiles in Diabetes-related genes using Immunosuppressant (면역억제제에 의한 당뇨 관련 유전자의 DNA microarray 분석)

  • Kim, Kyoung-Shin;Kim, Byoung-Soo
    • Journal of Haehwa Medicine
    • /
    • v.21 no.1
    • /
    • pp.11-21
    • /
    • 2012
  • New onset diabetes is a major complication after kidney transplantation. However, the natural course of posttransplantation diabetes mellitus (PTDM) remains unclear. The aim of this study was to demonstrate the detailed natural courses of PTDM according to the onset and persistency of hyperglycemia, and to investigate risk factors for development of different courses of PTDM in renal allograft recipients. The purpose of this study is to develop novel immune suppressants for PTDM using of action mechanism of them. The use of immunosuppressive drugs in transplanted patients is associated with the development of diabetes, possibly due to ${\beta}$-cell toxicity. To better understand the mechanisms leading to post-transplant diabetes, we investigated the actions of prolonged exposure of ${\beta}$-cells to therapeutical levels of tacrolimus (FK506) or cyclosporin A(CsA). The immunosuppressive drug cyclosporine(CsA) is a potent agent widely used after organ transplantations and various autoimmune disorders. After using CsA, some patients suffer severe complications including renal and vascular toxicity. The renal or vascular toxicity is influenced by the degree of the endothelial damage. FK506(tacrolimus) is a widely used immunosuppressive agent in the treatment of various medical conditions, including autoimmune disease, bone marrow and organ transplantations. We found some interesting clusters and confirmed the feasibility of cDNA microarray in the study of Immunosuppressant. In this study, we investigated gene expression patterns induced by Immunosuppressant in RIN-m5F of rat insulinoma cell line. Gene expressions evaluated using cDNA microarry in two clusters were increased or decreased. this study provides comprehensive comparison of the patterns of gene expression changes induced by CsA and FK506 in ${\beta}$-cells. This study could establish that the mode of action mechanism by which currently used insulin inhibitors inducing PTDM could be elucidated at least in part, which raises the possibility that novel immune suppressive PTDM can be developed. The molecular biological study on PTDM will also contribute the progress in diabetes research field as well as in that of PTDM.

Molecular Characterization of Rockbream (Oplegnathus fasciatus) Cytoskeletal β-actin Gene and Its 5'-Upstream Regulatory Region

  • Lee, Sang-Yoon;Kim, Ki-Hong;Nam, Yoon-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.2
    • /
    • pp.90-97
    • /
    • 2009
  • The cytoskeletal $\beta$-actin gene and its 5'-upstream region were isolated and characterized in the rockbream (Oplegnathus fasciatus). Complementary DNA of the rockbream $\beta$-actin represented a 1,125 bp of an open reading frame encoding 375 amino acids, and the rockbream $\beta$-actin cDNA and deduced amino acid sequences were highly homologous to those of other vertebrate orthologs. At the genomic level, the $\beta$-actin gene also exhibited an organization typical of vertebrate cytoskeletal actin genes (2,159 bp composed of five translated exons interrupted by four introns) with a conserved GT/AG exon-intron splicing rule. The putative non-translated exon predicted in the rockbream $\beta$-actin gene was much more homologous with those of teleostean $\beta$-actin genes than those of mammals. The 5'-upstream regulatory region isolated by genome walking displayed conserved and essential elements such as TATA, CArG and CAAT boxes in its proximal part, while several other immune- or stress-related motifs such as those for NF-kappa B, USF, HNF, AP-1 and C/EBP were in the distal part. Semi-quantitative RT-PCR assay results demonstrated that the rockbream $\beta$-actin transcripts were ubiquitously but different-tially expressed across the tissues of juveniles.