DOI QR코드

DOI QR Code

Analysis of miRNA expression in the trachea of Ri chicken infected with the highly pathogenic avian influenza H5N1 virus

  • Suyeon Kang (Department of Animal Science and Technology, Chung-Ang University) ;
  • Thi Hao Vu (Department of Animal Science and Technology, Chung-Ang University) ;
  • Jubi Heo (Department of Animal Science and Technology, Chung-Ang University) ;
  • Chaeeun Kim (Department of Animal Science and Technology, Chung-Ang University) ;
  • Hyun S. Lillehoj (Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture) ;
  • Yeong Ho Hong (Department of Animal Science and Technology, Chung-Ang University)
  • Received : 2023.05.27
  • Accepted : 2023.08.17
  • Published : 2023.09.30

Abstract

Background: Highly pathogenic avian influenza virus (HPAIV) is considered a global threat to both human health and the poultry industry. MicroRNAs (miRNA) can modulate the immune system by affecting gene expression patterns in HPAIV-infected chickens. Objectives: To gain further insights into the role of miRNAs in immune responses against H5N1 infection, as well as the development of strategies for breeding disease-resistant chickens, we characterized miRNA expression patterns in tracheal tissues from H5N1-infected Ri chickens. Methods: miRNAs expression was analyzed from two H5N1-infected Ri chicken lines using small RNA sequencing. The target genes of differentially expressed (DE) miRNAs were predicted using miRDB. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis were then conducted. Furthermore, using quantitative real-time polymerase chain reaction, we validated the expression levels of DE miRNAs (miR-22-3p, miR-146b-3p, miR27b-3p, miR-128-3p, miR-2188-5p, miR-451, miR-205a, miR-203a, miR-21-3p, and miR-200a3p) from all comparisons and their immune-related target genes. Results: A total of 53 miRNAs were significantly expressed in the infection samples of the resistant compared to the susceptible line. Network analyses between the DE miRNAs and target genes revealed that DE miRNAs may regulate the expression of target genes involved in the transforming growth factor-beta, mitogen-activated protein kinase, and Toll-like receptor signaling pathways, all of which are related to influenza A virus progression. Conclusions: Collectively, our results provided novel insights into the miRNA expression patterns of tracheal tissues from H5N1-infected Ri chickens. More importantly, our findings offer insights into the relationship between miRNA and immune-related target genes and the role of miRNA in HPAIV infections in chickens.

Keywords

Acknowledgement

The authors thank the Department of Biochemistry and Immunology Laboratory of the National Institute of Veterinary Research, Vietnam, for conducting the animal experiments described in this study.

References

  1. Lee CW, Saif YM. Avian influenza virus. Comp Immunol Microbiol Infect Dis. 2009;32(4):301-310. https://doi.org/10.1016/j.cimid.2008.01.007
  2. Suarez DL, Schultz-Cherry S. Immunology of avian influenza virus: a review. Dev Comp Immunol. 2000;24(2-3):269-283. https://doi.org/10.1016/S0145-305X(99)00078-6
  3. Peiris JS, de Jong MD, Guan Y. Avian influenza virus (H5N1): a threat to human health. Clin Microbiol Rev. 2007;20(2):243-267. https://doi.org/10.1128/CMR.00037-06
  4. Neumann G, Chen H, Gao GF, Shu Y, Kawaoka Y. H5N1 influenza viruses: outbreaks and biological properties. Cell Res. 2010;20(1):51-61. https://doi.org/10.1038/cr.2009.124
  5. Nuwarda RF, Alharbi AA, Kayser V. An overview of influenza viruses and vaccines. Vaccines (Basel). 2021;9(9):1032.
  6. Huang Y, Shen XJ, Zou Q, Wang SP, Tang SM, Zhang GZ. Biological functions of microRNAs: a review. J Physiol Biochem. 2011;67(1):129-139. https://doi.org/10.1007/s13105-010-0050-6
  7. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509-524. https://doi.org/10.1038/nrm3838
  8. Contreras J, Rao DS. MicroRNAs in inflammation and immune responses. Leukemia. 2012;26(3):404-413. https://doi.org/10.1038/leu.2011.356
  9. Momen-Heravi F, Bala S. miRNA regulation of innate immunity. J Leukoc Biol. 2018;103(6):1205-1217. https://doi.org/10.1002/JLB.3MIR1117-459R
  10. Lee S, Kang S, Heo J, Hong Y, Vu TH, Truong AD, et al. MicroRNA expression profiling in the lungs of genetically different Ri chicken lines against the highly pathogenic avian influenza H5N1 virus. J Anim Sci Technol. 2023;65(4):838-855. https://doi.org/10.5187/jast.2022.e127
  11. Li Z, Zhang J, Su J, Liu Y, Guo J, Zhang Y, et al. MicroRNAs in the immune organs of chickens and ducks indicate divergence of immunity against H5N1 avian influenza. FEBS Lett. 2015;589(4):419-425. https://doi.org/10.1016/j.febslet.2014.12.019
  12. Mishra A, Asaf M, Kumar A, Kulkarni DD, Sood R, Bhatia S, et al. Differential miRNA expression profiling of highly pathogenic avian influenza virus H5N1 infected chicken lungs reveals critical microRNAs, biological pathways and genes involved in the molecular pathogenesis. Virol Sin. 2022;37(3):465-468. https://doi.org/10.1016/j.virs.2022.03.004
  13. Lee J, Hong Y, Vu TH, Lee S, Heo J, Truong AD, et al. Influenza A pathway analysis of highly pathogenic avian influenza virus (H5N1) infection in genetically disparate Ri chicken lines. Vet Immunol Immunopathol. 2022;246:110404.
  14. Vu TH, Heo J, Hong Y, Kang S, Tran HT, Dang HV, et al. HPAI-resistant Ri chickens exhibit elevated antiviral immune-related gene expression. J Vet Sci. 2023;24(1):e13.
  15. Huprikar J, Rabinowitz S. A simplified plaque assay for influenza viruses in Madin-Darby kidney (MDCK) cells. J Virol Methods. 1980;1(2):117-120. https://doi.org/10.1016/0166-0934(80)90020-8
  16. Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47(D1):D155-D162. https://doi.org/10.1093/nar/gky1141
  17. Liu W, Wang X. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol. 2019;20(1):18.
  18. Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48(D1):D127-D131. https://doi.org/10.1093/nar/gkz757
  19. Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;50(W1):W216-W221. https://doi.org/10.1093/nar/gkac194
  20. RStudio Team. RStudio: integrated development for R [Internet]. Boston: RStudio Team; http://www.rstudio.com. Updated 2020. Accessed 2023 Jan 12.
  21. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-2504. https://doi.org/10.1101/gr.1239303
  22. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101-1108. https://doi.org/10.1038/nprot.2008.73
  23. Hunt HD, Jadhao S, Swayne DE. Major histocompatibility complex and background genes in chickens influence susceptibility to high pathogenicity avian influenza virus. Avian Dis. 2010;54(1 Suppl):572-575. https://doi.org/10.1637/8888-042409-ResNote.1
  24. Haller O, Staeheli P, Kochs G. Protective role of interferon-induced Mx GTPases against influenza viruses. Rev Sci Tech. 2009;28(1):219-231. https://doi.org/10.20506/rst.28.1.1867
  25. Jia YQ, Wang XL, Wang XW, Yan CQ, Lv CJ, Li XQ, et al. Common microRNA- mRNA interactions in different newcastle disease virus-infected chicken embryonic visceral tissues. Int J Mol Sci. 2018;19(5):1291.
  26. Carlson CM, Turpin EA, Moser LA, O'Brien KB, Cline TD, Jones JC, et al. Transforming growth factor-β: activation by neuraminidase and role in highly pathogenic H5N1 influenza pathogenesis. PLoS Pathog. 2010;6(10):e1001136.
  27. Yu J, Sun X, Goie JY, Zhang Y. Regulation of host immune responses against influenza A virus infection by mitogen-activated protein kinases (MAPKs). Microorganisms. 2020;8(7):1067.
  28. Barjesteh N, Shojadoost B, Brisbin JT, Emam M, Hodgins DC, Nagy E, et al. Reduction of avian influenza virus shedding by administration of Toll-like receptor ligands to chickens. Vaccine. 2015;33(38):4843-4849. https://doi.org/10.1016/j.vaccine.2015.07.070
  29. Wei Q, Xue H, Sun C, Li J, He H, Amevor FK, et al. Gga-miR-146b-3p promotes apoptosis and attenuate autophagy by targeting AKT1 in chicken granulosa cells. Theriogenology. 2022;190:52-64. https://doi.org/10.1016/j.theriogenology.2022.07.019
  30. Ehrhardt C, Wolff T, Pleschka S, Planz O, Beermann W, Bode JG, et al. Influenza A virus NS1 protein activates the PI3K/Akt pathway to mediate antiapoptotic signaling responses. J Virol. 2007;81(7):3058-3067. https://doi.org/10.1128/JVI.02082-06
  31. Duan X, Zhao M, Li X, Gao L, Cao H, Wang Y, et al. gga-miR-27b-3p enhances type I interferon expression and suppresses infectious bursal disease virus replication via targeting cellular suppressors of cytokine signaling 3 and 6 (SOCS3 and 6). Virus Res. 2020;281:197910.
  32. Zhao Y, Zhang K, Zou M, Sun Y, Peng X. gga-miR-451 negatively regulates Mycoplasma gallisepticum (HS strain)-induced inflammatory cytokine production via targeting YWHAZ. Int J Mol Sci. 2018;19(4):1191.
  33. Pham TT, Ban J, Hong Y, Lee J, Vu TH, Truong AD, et al. MicroRNA gga-miR-200a-3p modulates immune response via MAPK signaling pathway in chicken afflicted with necrotic enteritis. Vet Res. 2020;51(1):8.
  34. Lin HJ, Lin CW, Mersmann HJ, Ding ST. Sterol-O acyltransferase 1 is inhibited by gga-miR-181a-5p and gga-miR-429-3p through the TGFβ pathway in endodermal epithelial cells of Japanese quail. Comp Biochem Physiol B Biochem Mol Biol. 2020;240:110376.
  35. Chen F, Chen L, Li Y, Sang H, Zhang C, Yuan S, et al. traf3 positively regulates host innate immune resistance to influenza A virus infection. Front Cell Infect Microbiol. 2022;12:839625.
  36. Fric J, Zelante T, Wong AY, Mertes A, Yu HB, Ricciardi-Castagnoli P. NFAT control of innate immunity. Blood. 2012;120(7):1380-1389. https://doi.org/10.1182/blood-2012-02-404475
  37. Diehl N, Schaal H. Make yourself at home: viral hijacking of the PI3K/Akt signaling pathway. Viruses. 2013;5(12):3192-3212. https://doi.org/10.3390/v5123192
  38. Zhang C, Ni C, Lu H. Polo-like kinase 2: from principle to practice. Front Oncol. 2022;12:956225.
  39. Gotoh I, Adachi M, Nishida E. Identification and characterization of a novel MAP kinase kinase kinase, MLTK. J Biol Chem. 2001;276(6):4276-4286. https://doi.org/10.1074/jbc.M008595200
  40. Khiem D, Cyster JG, Schwarz JJ, Black BL. A p38 MAPK-MEF2C pathway regulates B-cell proliferation. Proc Natl Acad Sci U S A. 2008;105(44):17067-17072. https://doi.org/10.1073/pnas.0804868105