• Title/Summary/Keyword: immune-related gene

Search Result 230, Processing Time 0.025 seconds

Effects of Samjunghwan on the $IL-1{\beta}$ Gene Expression in the Macrophage (삼정환(三精丸)이 대식세포의 면역반응에서 유도되는 $IL-1{\beta}$ 유전자의 발현에 미치는 영향)

  • Kim, Se-Yoon;Jeong, Ji-Cheon
    • The Journal of Internal Korean Medicine
    • /
    • v.27 no.1
    • /
    • pp.228-236
    • /
    • 2006
  • Objectives : Macrophage has an important innate defense role in the immune system. When we are infected with pathogens, macrophage ingests them through phagocytosis or endocytosis, and then secretes many cytokines, such as IL-1, IL-6 and $TGF{\alpha}$, which are regulators of immune responses. The aim of this study is to determine how Samjunghwan effects the expression of cytokine and other immune-related genes in macrophages. Methods : Cells were treated directly with Samjunghwan and/or LPS at regular intervals. Total RNA of cells was isolated using TRIzol reagent, and the changes in cytokine gene expressions were investigated using RT-PCR, western blot and ELISA. Results : $IL-1{\alpha},\;IL-1{\beta}$ and COX-2 genes were inducibly expressed specifically by Samjunghwan in macrophage. Especially, $IL-1{\beta}$ gene was induced most strongly by treatment with Samjunghwan. Over time, treatment with Samjunghwan showed that the expression levels of $IL-1{\alpha}\;and\;$IL-1{\beta}$ genes increased from 1 to 4h, and then decreased from 4 to ISh. However, the expression level of COX-2 gene increased continuously up to 11h. $IL-1{\alpha},\;IL-1{\beta}$ and COX-2 genes were expressed synergistically by a simultaneous treatment of both Samjunghwan and LPS in macrophages. Secretion levels of translated $IL-1{\beta}$ increased continuously up to 11h. Conclusions : Though this study is only a start in the investigation of the efficasy of Samjunghwan, these results suggest that Samjunghwan has positive effects on immune responses.

  • PDF

Galleria mellonella 6-Tox Gene, Putative Immune Related Molecule in Lepidoptera

  • Lee, Joon-Ha;Park, Seung-Mi;Chae, Kwon-Seok;Lee, In-Hee
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.21 no.1
    • /
    • pp.127-132
    • /
    • 2010
  • We have characterized full-length cDNA encoding Gall-6-tox protein, which was cloned from the fat body of the immunized Galleria mellonella larvae. The cloned cDNA of Gall-6-tox consists of 1301 nucleotides and contained an open reading frame of 891 nucleotides corresponding to a protein of 296 residues that includes a putative 16-residue signal sequence and a 280-residue mature peptide with a calculated mass of 30,707.73 Da. The deduced mature peptide contains conserved tandem repeats of six cysteine-stabilized alpha beta ($Cs{\alpha}{\beta}$) motifs, which was detected in scorpion toxins and insect defensins. In the sequence homology search, mature Gall-6-tox showed 34% and 28% amino acid sequence homology with Bomb-6-tox from Bombyx mori and Spod-11-tox from Spodoptera frugiperda, respectively. Gall-6-tox orthologs were only found in Lepidopteran species, indicating that this new immune-related gene family is specific to this insect order. RT-PCR analysis revealed that Gall-6-tox was expressed primarily in the larval fat bodies, hemocytes, and midgut against invading bacteria into hemocoel. Moreover, the expression time course of Gall-6-tox was examined up to 24 h in the fat bodies and midgut after injection of E. coli. Altogether, these results suggest that Gall-6-tox is derived from defensins and Gall-6-tox may play a critical role in Lepidoptera immune system.

Vorinostat-induced acetylation of RUNX3 reshapes transcriptional profile through long-range enhancer-promoter interactions in natural killer cells

  • Eun-Chong Lee;Kyungwoo Kim;Woong-Jae Jung;Hyoung-Pyo Kim
    • BMB Reports
    • /
    • v.56 no.7
    • /
    • pp.398-403
    • /
    • 2023
  • Natural killer (NK) cells are an essential part of the innate immune system that helps control infections and tumors. Recent studies have shown that Vorinostat, a histone deacetylase (HDAC) inhibitor, can cause significant changes in gene expression and signaling pathways in NK cells. Since gene expression in eukaryotic cells is closely linked to the complex three-dimensional (3D) chromatin architecture, an integrative analysis of the transcriptome, histone profiling, chromatin accessibility, and 3D genome organization is needed to gain a more comprehensive understanding of how Vorinostat impacts transcription regulation of NK cells from a chromatin-based perspective. The results demonstrate that Vorinostat treatment reprograms the enhancer landscapes of the human NK-92 NK cell line while overall 3D genome organization remains largely stable. Moreover, we identified that the Vorinostat-induced RUNX3 acetylation is linked to the increased enhancer activity, leading to elevated expression of immune response-related genes via long-range enhancer-promoter chromatin interactions. In summary, these findings have important implications in the development of new therapies for cancer and immune-related diseases by shedding light on the mechanisms underlying Vorinostat's impact on transcriptional regulation in NK cells within the context of 3D enhancer network.

HPAI-resistant Ri chickens exhibit elevated antiviral immune-related gene expression

  • Thi Hao Vu;Jubi Heo;Yeojin Hong;Suyeon Kang;Ha Thi Thanh Tran;Hoang Vu Dang;Anh Duc Truong;Yeong Ho Hong
    • Journal of Veterinary Science
    • /
    • v.24 no.1
    • /
    • pp.13.1-13.11
    • /
    • 2023
  • Background: Highly pathogenic avian influenza viruses (HPAIVs) is an extremely contagious and high mortality rates in chickens resulting in substantial economic impact on the poultry sector. Therefore, it is necessary to elucidate the pathogenic mechanism of HPAIV for infection control. Objective: Gene set enrichment analysis (GSEA) can effectively avoid the limitations of subjective screening for differential gene expression. Therefore, we performed GSEA to compare HPAI-infected resistant and susceptible Ri chicken lines. Methods: The Ri chickens Mx(A)/BF2(B21) were chosen as resistant, and the chickens Mx(G)/BF2(B13) were selected as susceptible by genotyping the Mx and BF2 genes. The tracheal tissues of HPAIV H5N1 infected chickens were collected for RNA sequencing followed by GSEA analysis to define gene subsets to elucidate the sequencing results. Results: We identified four differentially expressed pathways, which were immune-related pathways with a total of 78 genes. The expression levels of cytokines (IL-1β, IL-6, IL-12), chemokines (CCL4 and CCL5), type interferons and their receptors (IFN-β, IFNAR1, IFNAR2, and IFNGR1), Jak-STAT signaling pathway genes (STAT1, STAT2, and JAK1), MHC class I and II and their co-stimulatory molecules (CD80, CD86, CD40, DMB2, BLB2, and B2M), and interferon stimulated genes (EIF2AK2 and EIF2AK1) in resistant chickens were higher than those in susceptible chickens. Conclusions: Resistant Ri chickens exhibit a stronger antiviral response to HPAIV H5N1 compared with susceptible chickens. Our findings provide insights into the immune responses of genetically disparate chickens against HPAIV.

Identification of Differentially Expressed Genes between Neonatal and Peripubertal Rat Thymi Using $GeneFishing^{TM}$ Polymerase Chain Reaction

  • Kang, Da-Won;Kim, Gyu-Tae;Han, Jae-Hee
    • Reproductive and Developmental Biology
    • /
    • v.31 no.1
    • /
    • pp.55-60
    • /
    • 2007
  • Aging causes thymus involution, and genes in thymus play an important role in the development of the immune system. In this study, we compared genes expressed in thymus of neonatal and peripubertal rats using annealing control primers (ACPs)-based GeneFishing polymerase chain reaction (PCR) and semiquantitative reverse transcription (RT)-PCR. We identified 10 differentially expressed genes (DEGs) with 20 ACPs. Of 10 DEGs, bystin-like, collagen type V alpha 1 (COL5A1), and T-cell receptor beta-chain segment 2 (TCRB2) that are related to immune-function were detected in rat thymus. Bystin-like and TCRB2 were up-regulated, while COL5A1 was down-regulated in peripubertal thymus. Semiquantitative RT-PCR confirmed postnatal changes in expression of bystin-like, COL5A1, and TCRB2. These results suggest that bystin-like, COL5A1, and TCRB2 could regulate immune function controlled in thymus as age increases.

Generation of Expressed Sequence Tags for Immune Gene Discovery and Marker Development in the Sea Squirt, Halocynthia roretzi

  • Kim, Young-Ok;Cho, Hyun-Kook;Park, Eun-Mi;Nam, Bo-Hye;Hur, Young-Baek;Lee, Sang-Jun;Cheong, Jae-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.9
    • /
    • pp.1510-1517
    • /
    • 2008
  • Expresssed sequence tag (EST) analysis was developed from three cDNA libraries constructed from cells of the digestive tract, gonad, and liver of sea squirt. Randomly selected cDNA clones were partially sequenced to generate a total of 922 ESTs, in which 687 unique ESTs were identified respectively. Results of BLASTX search showed that 612 ESTs (89%) have homology to genes of known function whereas 75 ESTs (11%) were unidentified or novel. Based on the major function of their encoded proteins, the identified clones were classified into ten broad categories. We also identified several kinds of immune-related genes as identifying novel genes. Sequence analysis of ESTs revealed the presence of microsatellite-containing genes that may be valuable for further gene mapping studies. The accumulation of a large number of identified cDNA clones is invaluable for the study of sea squirt genetics and developmental biology. Further studies using cDNA microarrays are needed to identify the differentially expressed transcripts after disease infection.

An EST-based approach for identifying genes expressed in the gills of olive flounder Paralichthys olivaceus

  • Lee, Jeong-Ho;Noh, Jae-Koo;Kim, Hyun-Chul;Park, Choul-Ji;Min, Byung-Hwa;Kim, Young-Ok;Kim, Jong-Hyun;Kim, Kyung-Kil;Kim, Woo-Jin;Myeong, Jeong-In
    • Journal of fish pathology
    • /
    • v.22 no.3
    • /
    • pp.383-389
    • /
    • 2009
  • Analysis of expressed sequence tags (ESTs) is an efficient approach for gene discovery, expression profiling, and development of resources useful for functional genomics studies. As part of studies on the immune system of olive flounder, a total of 251 EST sequences from gill cDNA library were generated to identify and characterize important genes in the immune machanisms of olive flounder. Of the 251 clones, 126 clones (50.2%) were identified as orthologues of known genes from olive flounder and other organisms. Among the 126 EST clones, 16 clones (12.7%) were representing 9 unique genes identified as homologous to the previously reported olive flounder ESTs, 100 clones (79.4%) representing 103unique genes were identified as orthologs of known genes from other organisms. We also identified several kinds of immune associated proteins, indicating EST as a powerful method for identifying immune related genes of fish as well as identifying novel genes. Further studies using cDNA microarrays are needed to identify the differentially expressed transcripts after disease infection.

Effects of gamma-aminobutyric acid and piperine on gene regulation in pig kidney epithelial cell lines

  • Shin, Juhyun;Lee, Yoon-Mi;Oh, Jeongheon;Jung, Seunghwa;Oh, Jae-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.9
    • /
    • pp.1497-1506
    • /
    • 2020
  • Objective: Gamma-aminobutyric acid (GABA) and piperine (PIP) are both nutritional supplements with potential use in animal diets. The purpose of this study is to investigate the effect of GABA and/or PIP treatment on the gene expression pattern of a pig kidney epithelial cell line. Methods: LLCPK1 cells were treated with GABA, PIP, or both, and then the gene expression pattern was analyzed using microarray. Gene ontology analysis was done using GeneOntology (Geneontology.org), and validation was performed using quantitative real-time polymerase chain reaction. Results: Gene ontology enrichment analysis was used to identify key pathway(s) of genes whose expression levels were regulated by these treatments. Microarray results showed that GABA had a positive effect on the transcription of genes related to regulation of erythrocyte differentiation and that GABA and PIP in combination had a synergistic effect on genes related to immune systems and processes. Furthermore, we found that effects of GABA and/or PIP on these selected genes were controlled by JNK/p38 MAPK pathway. Conclusion: These results can improve our understanding of mechanisms involved in the effect of GABA and/or PIP treatment on pig kidney epithelial cells. They can also help us evaluate their potential as a clinical diagnosis and treatment.

Profiling of remote skeletal muscle gene changes resulting from stimulation of atopic dermatitis disease in NC/Nga mouse model

  • Lee, Donghee;Seo, Yelim;Kim, Young-Won;Kim, Seongtae;Choi, Jeongyoon;Moon, Sung-Hee;Bae, Hyemi;Kim, Hui-sok;Kim, Hangyeol;Kim, Jae-Hyun;Kim, Tae-Young;Kim, Eunho;Yim, Suemin;Lim, Inja;Bang, Hyoweon;Kim, Jung-Ha;Ko, Jae-Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.5
    • /
    • pp.367-379
    • /
    • 2019
  • Although atopic dermatitis (AD) is known to be a representative skin disorder, it also affects the systemic immune response. In a recent study, myoblasts were shown to be involved in the immune regulation, but the roles of muscle cells in AD are poorly understood. We aimed to identify the relationship between mitochondria and atopy by genome-wide analysis of skeletal muscles in mice. We induced AD-like symptoms using house dust mite (HDM) extract in NC/Nga mice. The transcriptional profiles of the untreated group and HDM-induced AD-like group were analyzed and compared using microarray, differentially expressed gene and functional pathway analyses, and protein interaction network construction. Our microarray analysis demonstrated that immune response-, calcium handling-, and mitochondrial metabolism-related genes were differentially expressed. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology pathway analyses, immune response pathways involved in cytokine interaction, nuclear factor-kappa B, and T-cell receptor signaling, calcium handling pathways, and mitochondria metabolism pathways involved in the citrate cycle were significantly upregulated. In protein interaction network analysis, chemokine family-, muscle contraction process-, and immune response-related genes were identified as hub genes with many interactions. In addition, mitochondrial pathways involved in calcium signaling, cardiac muscle contraction, tricarboxylic acid cycle, oxidation-reduction process, and calcium-mediated signaling were significantly stimulated in KEGG and Gene Ontology analyses. Our results provide a comprehensive understanding of the genome-wide transcriptional changes of HDM-induced AD-like symptoms and the indicated genes that could be used as AD clinical biomarkers.

Effects of Cordyceps Militaris Extract on Tumor Immunity

  • Ha, Jae-Won;Yoo, Hwa-Seung;Shin, Jang-Woo;Cho, Jung-Hyo;Lee, Nan-Heon;Yoon, Dam-Hee;Lee, Yeon-Weol;Son, Chang-Gue;Cho, Chong-Kwan
    • The Journal of Korean Medicine
    • /
    • v.27 no.4
    • /
    • pp.12-29
    • /
    • 2006
  • Background and Aims : Even though various strategies for cancer treatment have advanced with the remarkable development of genomic information and technology, it is far from giving relief to cancer patients. Recently there is accumulating evidence that the immune system is closely connected to anti-tumor defense mechanisms in a multistage process. This includes tumorigenesis, invasion, growth and metastasis. Cordyceps Militaris, a well-known oriental herbal medicine, is a parasitic fungus that has been used as an immune enhancing agent for a long period of time. However, little is known about the cancer-related immunomodulatory effects and anti-tumor activities. In the present study, we aimed to investigate the effects of Cordyceps Militaris extract (CME) on immune modulating and anti-tumor activity. Materials and Methods : To elucidate the effects of CME on macrophage and natural killer (NK) cell activity, we analyzed nitric oxide (NO) production, NK cytotoxicity and gene expression of cytokines related with macrophages and NK cell activity. Results and Conclusions : CME activated and promoted macrophage production of NO. It also enhanced gene expression of IL-1 and iNOS in RAW 264.7 cells. CME promoted cytotoxicity of NK cells against YAC-1 cells and enhanced NK cell related gene expression such as IL-1, IL-2, IL-12, iNOS, IFN-${\gamma}$ and TNF-${\alpha}$ in mice splenocytes. It also Promoted protein expression of IL-10, IL-12, IFN-${\gamma}$ and TNF-${\alpha}$ in mice splenocytes and inhibited lung tumor metastasis induced by CT-26 cell line compared with the control group. From these results, it could be concluded that CME is an effective herbal drug for modulating the immune system and anti-cancer treatment by promoting macrophage and NK cell activity.

  • PDF