Generation of Expressed Sequence Tags for Immune Gene Discovery and Marker Development in the Sea Squirt, Halocynthia roretzi

  • Kim, Young-Ok (Biotechnology Research Institute, National Fisheries Research and Development Institute) ;
  • Cho, Hyun-Kook (Department of Molecular Biology, Pusan National University) ;
  • Park, Eun-Mi (Biotechnology Research Institute, National Fisheries Research and Development Institute) ;
  • Nam, Bo-Hye (Biotechnology Research Institute, National Fisheries Research and Development Institute) ;
  • Hur, Young-Baek (Research Center for Aquaculture Environment) ;
  • Lee, Sang-Jun (Biotechnology Research Institute, National Fisheries Research and Development Institute) ;
  • Cheong, Jae-Hun (Department of Molecular Biology, Pusan National University)
  • Published : 2008.09.30

Abstract

Expresssed sequence tag (EST) analysis was developed from three cDNA libraries constructed from cells of the digestive tract, gonad, and liver of sea squirt. Randomly selected cDNA clones were partially sequenced to generate a total of 922 ESTs, in which 687 unique ESTs were identified respectively. Results of BLASTX search showed that 612 ESTs (89%) have homology to genes of known function whereas 75 ESTs (11%) were unidentified or novel. Based on the major function of their encoded proteins, the identified clones were classified into ten broad categories. We also identified several kinds of immune-related genes as identifying novel genes. Sequence analysis of ESTs revealed the presence of microsatellite-containing genes that may be valuable for further gene mapping studies. The accumulation of a large number of identified cDNA clones is invaluable for the study of sea squirt genetics and developmental biology. Further studies using cDNA microarrays are needed to identify the differentially expressed transcripts after disease infection.

Keywords

References

  1. Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search program. Nucleic Acids Res. 25: 3389-3402 https://doi.org/10.1093/nar/25.17.3389
  2. Blount, P. and J. P. Merlie. 1991. BIP associates with newly synthesized subunits of the mouse muscle nicotinic receptor. J. Cell Biol. 113: 1125-1132 https://doi.org/10.1083/jcb.113.5.1125
  3. Carmel-Harel, O. and G. Storz. 2000. Roles of the glutathioneand thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu. Rev. Microbiol. 54: 439-461 https://doi.org/10.1146/annurev.micro.54.1.439
  4. Cho, H. K., B. H. Nam, H. J. Kong, H. S. Han, Y. B. Hur, T. J. Choi, Y. H. Choi, W. J. Kim, and J. H. Cheong. 2008. Identification of softness syndrome-associated candidate genes and DNA sequence variation in the sea squirt, Halocynthia roretzi. Mar. Biotechnol. 10: 447-456 https://doi.org/10.1007/s10126-008-9084-y
  5. Chu, C. T., D. S. Rubenstein, J. J. Enghild, and S. V. Pizzo. 1991. Mechanism of insulin incorporation into ${\alpha}2-macroglobulin$: Implication for the study of peptide and growth factor binding. Biochemistry 30: 1551-1560 https://doi.org/10.1021/bi00220a016
  6. Cordeiro, G.., M. R. Casu, C. L. McIntyre, J. M. Manners, and R. J. Henry. 2001. Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci. 160: 1115-1123 https://doi.org/10.1016/S0168-9452(01)00365-X
  7. Delaunay, A., A. D. Isnard, and M. B. Toledano. 2000. $H_2O_2$ sensing through oxidation of the Yap1 transcription factor. EMBO J. 19: 5157-5166 https://doi.org/10.1093/emboj/19.19.5157
  8. Edgar, P. F. 1995. Hucolin, a new corticosteroid-binding protein from human plasma with structural similarities to ficolins, transforming growth $factor-{\beta}1-binding$ proteins. FEBS Lett. 375: 159-161 https://doi.org/10.1016/0014-5793(95)01205-S
  9. Fritz, I. B., P. S. Tung, and M. Ailenberg. 1993. Proteases and antiproteases in the seminiferous tubule, pp. 217-235. In L. D. Russell and M. D. Griswold (eds.). The Sertoli Cell. Cache River Press, Clearwater, FL
  10. Gasque, P. 2004. Complement: A unique innate immune sensor for danger signals. Mol. Immunol. 41: 1089-1098 https://doi.org/10.1016/j.molimm.2004.06.011
  11. Harumiya, S., A. Omori, T. Sugiura, Y. Fukumoto, H. Tachikawa, and D. Fujimoto. 1995. EBP-37, a new elastin-binding protein in human plasma: Structural similarity to ficolins, tranforming growth $factor-{\beta}1-binding proteins. J. Biochem. 117: 1029-1035 https://doi.org/10.1093/oxfordjournals.jbchem.a124802
  12. Hass, I. G. and M. Wabl. 1983. Immunoglobulin heavy chain binding protein. Nature 306: 387-389 https://doi.org/10.1038/306387a0
  13. He, C., L. Chen, M. Simmons, P. Li, S. Kim, and Z. J. Liu. 2003. Putative SNP discovery in interspecific hybrids of catfish by comparative EST analysis. Anim. Genet. 34: 445-448 https://doi.org/10.1046/j.0268-9146.2003.01054.x
  14. He, G., R. Meng, M. Newman, G. Gao, R. N. Pittman, and C. S. Prakash. 2003. Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.). BMC Plant Biol. 3: 1-6 https://doi.org/10.1186/1471-2229-3-1
  15. Huang, S. S., P. O. Grady, and J. S. Huang. 1998. Human transforming growth $factor-{\beta}-{\alpha}2-macroglobulin$ complex is a latent form of transforming growth factor ${\beta}$. J. Biol. Chem. 263: 1535-1541
  16. Hurtley, S. M., D. G. Bole, H. Hoover-Litty, A. Helenius, and C. S. Copeland. 1989. Interactions of misfolded influenza virus hemagglutinin with binding protein (Bip). J. Cell Biol. 108: 2117-2126 https://doi.org/10.1083/jcb.108.6.2117
  17. Ichijo, H., L. Ronnstrand, K. Miyagawa, H. Ohashi, C. H. Heldin, and K. Miyazono. 1991. Purification of transforming growth $factor-{\beta}$ 1 binding proteins from porcine uterus membranes. J. Biol. Chem. 266: 22459-22464
  18. Ichijo, H., U. Hellman, C. Wernstedt, L. J. Gonez, L. Claesson- Welsh, C. H. Helden, and K. Miyazono. 1993. Molecular cloning and characterization of ficolin, a multimeric protein with fibrinogen- and collagen-like domains. J. Biol. Chem. 268: 14505-14513
  19. James, K. 1990. Interactions between cytokines and ${\alpha}2-macroglobulin$. Immunol. Today 11: 163-166 https://doi.org/10.1016/0167-5699(90)90067-J
  20. Kantety, R. V., M. La Rota, D. E. Matthews, and M. E. Sorrells. 2002. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol. Biol. 48: 501-510 https://doi.org/10.1023/A:1014875206165
  21. Kuge, S., M. Arita, A. Murayama, K. Maeta, S. Izawa, Y. Inoue, and A. Nomoto. 2001. Regulation of the yeast Yap1p nuclear export signal is mediated by redox signal-induced reversible disulfide bond formation. Mol. Cell. Biol. 21: 6139-6150 https://doi.org/10.1128/MCB.21.18.6139-6150.2001
  22. Le, Y., S. H. Lee, O. L. Kon, and J. Lu. 1998. Human L-ficolin: plasma levels, sugar specificity, and assignment of its lectin activity to the fibrinogen-like (FBG) domain. FEBS Lett. 425: 367-370 https://doi.org/10.1016/S0014-5793(98)00267-1
  23. Liu, Z., P. Li, A. Kocabas, Z. Ju, A. Karsi, D. Cao, and A. Patterson. 2001. Microsatellite-containing genes from the channel catfish brain: Evidence of trinucleotide repeat expansion in the coding region of nucleotide excision repair gene RAD23B. Biochem. Biophys. Res. Commun. 289: 317-324 https://doi.org/10.1006/bbrc.2001.5978
  24. Lublin, D. M. 2005. [Review] Cromer and DAF: Role in health and disease. Immunohematology 21: 39-47
  25. Lublin, D. M., S. Kompelli, J. R. Storry, and M. E. Reid. 2000. Molecular basis of Cromer blood group antigens. Transfusion 40: 208-213 https://doi.org/10.1046/j.1537-2995.2000.40020208.x
  26. Lu, J., Y. Le, L. Kon, J. Chan, and S. H. Lee. 1996. Biosynthesis of human ficolin, an Escherichia coli-binding protein, by monocytes: Comparison with the synthesis of two macrophagespecific proteins, C1q and the mannose receptor. Immunology 89: 289-294 https://doi.org/10.1046/j.1365-2567.1996.d01-732.x
  27. Makabe, K. W., T. Kawashima, S. Kawashima, T. Minokawa, A. Adachi, H. Kawamura, et al. 2001. Large-scale cDNA analysis of the maternal genetic information in the egg of Halocynthia roretzi for a gene expression catalog of ascidian development. Development 128: 2555-2567
  28. Miwa, T. and W. C. Song. 2001. Membrane complement regulatory proteins: Insight from animal studies and relevance to human diseases. Int. Immunopharmacol. 1: 445-459 https://doi.org/10.1016/S1567-5769(00)00043-6
  29. Morgan, B. P. 1999. Regulation of the complement membrane attack pathway. Crit. Rev. Immunol. 19: 173-198
  30. Murakawa, K., K. Matsubara, A. Fukushima, J. Yoshii, and K. Okubo. 1994. Chromosomal assignments of 3'-directed partial cDNA sequences representing novel genes expressed in granulocytoid cells. Genomics 23: 379-389 https://doi.org/10.1006/geno.1994.1514
  31. Parsons, J. D. 1995. Improved tools for DNA comparison and clustering. Comp. Appl. Biosci. 1: 603-613
  32. Sambrook, J., E. F. Frisch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Habor Laboratory Press, Cold Spring Habor, NY, U.S.A
  33. Serapion, J., H. Kucuktas, J. Feng, and Z. Liu. 2004. Bioinformatic mining of type I microsatellites from expressed sequence tags of channel catfish (Ictalurus punctatus). Mar. Biotechnol. 6: 364-377 https://doi.org/10.1007/s10126-003-0039-z
  34. Somerville, C. and S. Somerville. 1999. Plant functional genetics. Science 285: 380-383 https://doi.org/10.1126/science.285.5426.380
  35. Sottrup-Jensen, L. 1989. Alpha-macroglobulins: Structure, shape, and mechanism of proteinase complex formation. J. Biol. Chem. 264: 11539-11542