• 제목/요약/키워드: immune-related gene

검색결과 237건 처리시간 0.032초

Genetic Association of the Porcine C9 Complement Component with Hemolytic Complement Activity

  • Khoa, D.V.A.;Wimmers, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권9호
    • /
    • pp.1354-1361
    • /
    • 2015
  • The complement system is a part of the natural immune regulation mechanism against invading pathogens. Complement activation from three different pathways (classical, lectin, and alternative) leads to the formation of C5-convertase, an enzyme for cleavage of C5 into C5a and C5b, followed by C6, C7, C8, and C9 in membrane attack complex. The C9 is the last complement component of the terminal lytic pathway, which plays an important role in lysis of the target cells depending on its self-polymerization to form transmembrane channels. To address the association of C9 with traits related to disease resistance, the complete porcine C9 cDNA was comparatively sequenced to detect single nucleotide polymorphisms (SNPs) in pigs of the breeds Hampshire (HS), Duroc (DU), Berlin miniature pig (BMP), German Landrace (LR), Pietrain (PIE), and Muong Khuong (Vietnamese potbelly pig). Genotyping was performed in 417 $F_2$ animals of a resource population (DUMI: $DU{\times}BMP$) that were vaccinated with Mycoplasma hyopneumoniae, Aujeszky diseases virus and porcine respiratory and reproductive syndrome virus at 6, 14 and 16 weeks of age, respectively. Two SNPs were detected within the third exon. One of them has an amino acid substitution. The European porcine breeds (LR and PIE) show higher allele frequency of these SNPs than Vietnamese porcine breed (MK). Association of the substitution SNP with hemolytic complement activity indicated statistically significant differences between genotypes in the classical pathway but not in the alternative pathway. The interactions between eight time points of measurement of complement activity before and after vaccinations and genotypes were significantly different. The difference in hemolytic complement activity in the both pathways depends on genotype, kind of vaccine, age and the interaction to the other complement components. These results promote the porcine C9 (pC9) as a candidate gene to improve general animal health in the future.

STAT6 Expression and IL-13 Production in Association with Goblet Cell Hyperplasia and Worm Expulsion of Gymnophalloides seoi from C57BL/6 Mice

  • Lee, Jin-Joo;Kim, Donghee;Pyo, Kyoung-Ho;Kim, Min-Ki;Kim, Hyo-Jin;Chai, Jong-Yil;Shin, Eun-Hee
    • Parasites, Hosts and Diseases
    • /
    • 제51권5호
    • /
    • pp.589-594
    • /
    • 2013
  • In intestinal helminth infections, Th2 immune respones are generally associated with mucin secretion for worm expulsion from the host intestine. In particular, IL-4 and IL-13 are the important cytokines related with intestinal mucus production via STAT6 signalling in nematode infections. However, this perspective has never been studied in Gymnophalloides seoi infection. The present study aimed to observe the STAT6 signalling and cytokine responses in C57BL/6 mice, a mouse strain resistant to infection with this trematode. The results showed that worm expulsion occurred actively during days 1-2 post-infection (PI), when goblet cells began to proliferate in the small intestine. The STAT6 gene expression in the mouse spleen became remarkable from day 2 PI. Moreover, G. seoi infection induced a significant increase of IL-13 from day 4 PI in the spleen of infected mice. Our results suggested that goblet cell hyperplasia and worm expulsion in G. seoi-infected mice should be induced by STAT6 signalling, in which IL-13 may be involved as a dominant triggering cytokine.

Regulation Roles of MICA and NKG2D in Human Renal Cancer Cells

  • Jia, Hong-Ying;Liu, Jun-Li;Yuan, Ming-Zhen;Zhou, Cheng-Jun;Sun, Wen-Dong;Zhao, Jing-Jie;Wang, Jue;Liu, Ling;Luan, Yun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권9호
    • /
    • pp.3901-3905
    • /
    • 2015
  • Objective: Our aim was to investigation the roles of MHC class I chain-related gene A(MICA) and natural killer cell group 2D(NKG2D) in human renal cancer cells. Materials and Methods: The expression of membrane MICA (mMICA) on renal cells and NKG2D on NK cells were detected by flow cytometry (FCM); the content of sMICA were detected by enzyme linked immunosorbent assay (ELISA) and the distribution of mMICA on renal tumor tissues by immunohistochemistry; the interaction between MICA and NKG2D was observed by antibody closed method. Results: Our results showed that the expression of mMICA in renal cancer tissues was significantly higher than in controls, where the soluble MICA was not expressed. Cytotoxic activity of NK cells was significantly reduced after exposure to NKG2D and MICA antibodies (P<0.05), and serum containing sMICA can obviously lower the function of NKG2D (P<0.05). Conclusions: The interaction of mMICA and NKG2D play important roles in mediation of cytotoxicity of NK cells in RCC. On the other hand, sMICA may mediate tumor immune escape through down- regulated NKG2D expression.

Protein-protein Interaction Network Analyses for Elucidating the Roles of LOXL2-delta72 in Esophageal Squamous Cell Carcinoma

  • Wu, Bing-Li;Zou, Hai-Ying;Lv, Guo-Qing;Du, Ze-Peng;Wu, Jian-Yi;Zhang, Pi-Xian;Xu, Li-Yan;Li, En-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권5호
    • /
    • pp.2345-2351
    • /
    • 2014
  • Lysyl oxidase-like 2 (LOXL2), a member of the lysyl oxidase (LOX) family, is a copper-dependent enzyme that catalyzes oxidative deamination of lysine residues on protein substrates. LOXL2 was found to be overexpressed in esophageal squamous cell carcinoma (ESCC) in our previous research. We later identified a LOXL2 splicing variant LOXL2-delta72 and we overexpressed LOXL2-delta72 and its wild type counterpart in ESCC cells following microarray analyses. First, the differentially expressed genes (DEGs) of LOXL2 and LOXL2-delta72 compared to empty plasmid were applied to generate protein-protein interaction (PPI) sub-networks. Comparison of these two sub-networks showed hundreds of different proteins. To reveal the potential specific roles of LOXL2- delta72 compared to its wild type, the DEGs of LOXL2-delta72 vs LOXL2 were also applied to construct a PPI sub-network which was annotated by Gene Ontology. The functional annotation map indicated the third PPI sub-network involved hundreds of GO terms, such as "cell cycle arrest", "G1/S transition of mitotic cell cycle", "interphase", "cell-matrix adhesion" and "cell-substrate adhesion", as well as significant "immunity" related terms, such as "innate immune response", "regulation of defense response" and "Toll signaling pathway". These results provide important clues for experimental identification of the specific biological roles and molecular mechanisms of LOXL2-delta72. This study also provided a work flow to test the different roles of a splicing variant with high-throughput data.

활막 세포에서 HCV Core 단백에 의한 Interleukin-8 발현 유도 (Induction of Interleukin-8 Expression in Synovial Cell by Hepatitis C Virus Core Protein)

  • 왕진상;허원희;김소연;윤승규
    • IMMUNE NETWORK
    • /
    • 제6권1호
    • /
    • pp.20-26
    • /
    • 2006
  • Background: Rheumatoid arthritis (RA) is a chronic and systemic inflammatory disease that is characterized by invasive synovial hyperplasia, leading to progressive joint destruction. Recent studies have described that RA is caused by virus, bacteria or outside material. Approximately 2 to 20% of RA cases arc reported to be associated with infected hepatitis C virus (HCV). However, the mechanisms underlying virus-induced RA are still unknown. Moreover, few molecular studies have addressed the inflammatory aspects of HCV-associated autoimmune RA. In this study, we aimed to determine whe ther or not another HCV core protein transactivates the IL-8 gene expression, prototypic chemokine, in synovial cell. Methods: To establish the HCV core expressing stable synovial cell line, pCI-neo-core, a plasmid encoding HCV core protein, were transfected to HIG-82 cell line that is an established cell line from rabbit periaricular soft tissue. We examined the morphological changes and cell cycle distribution of HIG-82 cells with expression of HCV core protein by inverted microscopy and flow cytometry analysis, respectively. Also, we determined the mRNA levels of Interleukin (IL)-6 and IL-8 related to the inflammation by RT-PCR and then analyzed regulation of IL-8 expression by the NF-${\kappa}B$ pathway. Results: Our study showed no significant differences in morphology and cell cycle between HIG-82 control cell line and HIG-82 expressing HCV core protein. However, expression of HCV core protein induces the IL-8 mRNA expression in HIG-82 core cells via activated NF-${\kappa}B$ pathway. Conclusion: These results suggest that HCV core protein can lead to enhanced IL-8 expression. Such a proinflammatory role may contribute to the etiologic pathogenesis in RA patients with HCV infection.

Anti-Inflammatory Effect of Asterias amurensis Fatty Acids through NF-κB and MAPK Pathways against LPS-Stimulated RAW264.7 Cells

  • Monmai, Chaiwat;Go, Seok Hyeon;Shin, Il-sik;You, SangGuan;Kim, Dae-ok;Kang, SeokBeom;Park, Woo Jung
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권10호
    • /
    • pp.1635-1644
    • /
    • 2018
  • Asterias amurensis (starfish) is a marine organism that is harmful to the fishing industry, but is also a potential source of functional materials. The present study was conducted to analyze the profiles of fatty acids extracted from A. amurensis tissues and their anti-inflammatory effects on RAW264.7 macrophage cells. In different tissues, the component ratios of saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids differed; particularly, polyunsaturated fatty acids such as dihomo-gamma-linolenic acid (20:3n-6) and eicosapentaenoic acid (20:5n-3) were considerably different. In lipopolysaccharide-stimulated RAW264.7 cells, fatty acids from A. amurensis skin, gonads, and digestive glands exhibited anti-inflammatory activities by reducing nitric oxide production and inducing nitric oxide synthase gene expression. Asterias amurensis fatty acids effectively suppressed the expression of inflammatory cytokines such as tumor necrosis $factor-{\alpha}$, interleukin-$1{\beta}$, and interleukin-6 in lipopolysaccharide-stimulated cells. Cyclooxygenase-2 and prostaglandin $E_2$, which are critical inflammation biomarkers, were also significantly suppressed. Furthermore, A. amurensis fatty acids reduced the phosphorylation of nuclear $factor-{\kappa}B$ p-65, p38, extracellular signal-related kinase 1/2, and c-Jun N-terminal kinase, indicating that these fatty acids ameliorated inflammation through the nuclear $factor-{\kappa}B$ and mitogen-activated protein kinase pathways. These results provide insight into the anti-inflammatory mechanism of A. amurensis fatty acids on immune cells and suggest that the species is a potential source of anti-inflammatory molecules.

Platform Technology for Food-Grade Expression System Using the genus Bifidobacterium

  • Park, Myeong-Soo;Kang, Yoon-Hee;Cho, Sang-Hee;Seo, Jeong-Min;Ji, Geun-Eog
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2001년도 Proceedings of 2001 International Symposium
    • /
    • pp.155-157
    • /
    • 2001
  • Bifidobacterium spp. is nonpathogenic, gram-positive and anaerobic bacteria, which inhabit the intestinal tract of humans and animals. In breast-fed infants, bifidobacteria comprise morethan 90% of the gut bacterial population. Bifidobacteria spp. are used in commericial fermented dairy products and have been suggested to exert health promoting effects on the host by maintaining intestinal microflora balances, improving lactose tolerance, reducing serum cholesterol levels, increasing synthesis of vitamins, and aiding the immune enchancement and anticarcinogenic activity for the host. These beneficial effects of Bifidobacterium are strain-related. Therefore continued efforts to improve strain characteristics are warranted. in these respect, development of vector system for Bifidobacterium is very important not only for the strain improvement but also because Bifidobacterium is most promising in serving as a delivery system for the useful gene products, such as vaccine or anticarcinogenic polypeptides, into human intestinal tract. For developing vector system, we have characterized several bifidobacterial plasmids at genetic level and developed several shuttle vectors between E. coli and Bifidobacterium using them. Also, we have cloned and sequenced several metabolic genes and food grade selection marker. Also we have obtained bifidobacterial surface protein, which will be used as the mediator for surface display of foreign genes. Recently we have succeeded in expressing amylase and GFP in Bifidobacterium using our own expression vector system. Now we are in a very exciting stage for the molecular breeding and safe delivery system using probiotic Bifidobacterium strains.

  • PDF

Transcriptomic Analysis of Oryza sativa Leaves Reveals Key Changes in Response to Magnaporthe oryzae MSP1

  • Meng, Qingfeng;Gupta, Ravi;Kwon, Soon Jae;Wang, Yiming;Agrawal, Ganesh Kumar;Rakwal, Randeep;Park, Sang-Ryeol;Kim, Sun Tae
    • The Plant Pathology Journal
    • /
    • 제34권4호
    • /
    • pp.257-268
    • /
    • 2018
  • Rice blast disease, caused by Magnaporthe oryzae, results in an extensive loss of rice productivity. Previously, we identified a novel M. oryzae secreted protein, termed MSP1 which causes cell death and pathogen-associated molecular pattern (PAMP)-triggered immune (PTI) responses in rice. Here, we report the transcriptome profile of MSP1-induced response in rice, which led to the identification of 21,619 genes, among which 4,386 showed significant changes (P < 0.05 and fold change > 2 or < 1/2) in response to exogenous MSP1 treatment. Functional annotation of differentially regulated genes showed that the suppressed genes were deeply associated with photosynthesis, secondary metabolism, lipid synthesis, and protein synthesis, while the induced genes were involved in lipid degradation, protein degradation, and signaling. Moreover, expression of genes encoding receptor-like kinases, MAPKs, WRKYs, hormone signaling proteins and pathogenesis-related (PR) proteins were also induced by MSP1. Mapping these differentially expressed genes onto various pathways revealed critical information about the MSP1-triggered responses, providing new insights into the molecular mechanism and components of MSP1-triggered PTI responses in rice.

Probiotic Potential of Enterococcus faecium Isolated from Chicken Cecum with Immunomodulating Activity and Promoting Longevity in Caenorhabditis elegans

  • Sim, Insuk;Park, Keun-Tae;Kwon, Gayeung;Koh, Jong-Ho;Lim, Young-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권6호
    • /
    • pp.883-892
    • /
    • 2018
  • Probiotics, including Enterococcus faecium, confer a health benefit on the host. An Enterococcus strain was isolated from healthy chicken cecum, identified as E. faecium by 16S rDNA gene sequence analysis, and designated as E. faecium L11. To evaluate the potential of E. faecium L11 as a probiotic, the gastrointestinal tolerance, immunomodulatory activity, and lifespan extension properties of the strain were assayed. E. faecium L11 showed >66% and >62% survival in artificial gastric juice (0.3% pepsin, pH 2.5) and simulated small intestinal juice (0.5% bile salt and 0.1% pancreatin), respectively. Heat-killed E. faecium L11 significantly (p < 0.05) increased immune cell proliferation compared with controls, and stimulated the production of cytokines (IL-6 and $TNF-{\alpha}$) by activated macrophages obtained from ICR mice. In addition, E. faecium L11 showed a protective effect against Salmonella Typhimurium infection in Caenorhabditis elegans. In addition, feeding E. faecium L11 significantly (p < 0.05) extended the lifespan of C. elegans compared with the control. Furthermore, genes related to aging and host defense were upregulated in E. faecium L11-fed worms. In conclusion, E. faecium L11, which prolongs the lifespan of C. elegans, may be a potent probiotic supplement for livestock.

NDRG2 Promotes GATA-1 Expression through Regulation of the JAK2/STAT Pathway in PMA-stimulated U937 Cells

  • Kang, Kyeong-Ah;Jung, Hye-Youn;Nam, So-Rim;Lim, Jong-Seok
    • IMMUNE NETWORK
    • /
    • 제11권6호
    • /
    • pp.348-357
    • /
    • 2011
  • Background: N-myc downstream-regulated gene 2 (NDRG2), a member of a newly described family of differentiation-related genes, has been characterized as a regulator of dendritic cells. However, the role of NDRG2 on the expression and activation of transcription factors in blood cells remains poorly understood. In this study, we investigated the effects of NDRG2 overexpression on GATA-1 expression in PMAstimulated U937 cells. Methods: We generated NDRG2-overexpressing U937 cell line (U937-NDRG2) and treated the cells with PMA to investigate the role of NDRG2 on GATA-1 expression. Results: NDRG2 overexpression in U937 cells significantly induced GATA-1 expression in response to PMA stimulation. Interestingly, JAK2/STAT and BMP-4/Smad pathways associated with the induction of GATA-1 were activated in PMA-stimulated U937-NDRG2 cells. We found that the inhibition of JAK2 activation, but not of BMP-4/Smad signaling, can elicit a decrease of PMA-induced GATA-1 expression in U937-NDRG2 cells. Conclusion: The results reveal that NDRG2 promotes the expression of GATA-1 through activation of the JAK2/STAT pathway, but not through the regulation of the BMP-4/Smad pathway in U937 cells. Our findings further suggest that NDRG2 may play a role as a regulator of erythrocyte and megakaryocyte differentiation during hematopoiesis.