DOI QR코드

DOI QR Code

Transcriptomic Analysis of Oryza sativa Leaves Reveals Key Changes in Response to Magnaporthe oryzae MSP1

  • Meng, Qingfeng (Department of Plant Bioscience, Life and Energy Convergence Research Institute, Pusan National University) ;
  • Gupta, Ravi (Department of Plant Bioscience, Life and Energy Convergence Research Institute, Pusan National University) ;
  • Kwon, Soon Jae (Department of Plant Bioscience, Life and Energy Convergence Research Institute, Pusan National University) ;
  • Wang, Yiming (Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research) ;
  • Agrawal, Ganesh Kumar (Research Laboratory for Biotechnology and Biochemistry (RLABB)) ;
  • Rakwal, Randeep (Research Laboratory for Biotechnology and Biochemistry (RLABB)) ;
  • Park, Sang-Ryeol (Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Sun Tae (Department of Plant Bioscience, Life and Energy Convergence Research Institute, Pusan National University)
  • Received : 2018.01.23
  • Accepted : 2018.05.14
  • Published : 2018.08.01

Abstract

Rice blast disease, caused by Magnaporthe oryzae, results in an extensive loss of rice productivity. Previously, we identified a novel M. oryzae secreted protein, termed MSP1 which causes cell death and pathogen-associated molecular pattern (PAMP)-triggered immune (PTI) responses in rice. Here, we report the transcriptome profile of MSP1-induced response in rice, which led to the identification of 21,619 genes, among which 4,386 showed significant changes (P < 0.05 and fold change > 2 or < 1/2) in response to exogenous MSP1 treatment. Functional annotation of differentially regulated genes showed that the suppressed genes were deeply associated with photosynthesis, secondary metabolism, lipid synthesis, and protein synthesis, while the induced genes were involved in lipid degradation, protein degradation, and signaling. Moreover, expression of genes encoding receptor-like kinases, MAPKs, WRKYs, hormone signaling proteins and pathogenesis-related (PR) proteins were also induced by MSP1. Mapping these differentially expressed genes onto various pathways revealed critical information about the MSP1-triggered responses, providing new insights into the molecular mechanism and components of MSP1-triggered PTI responses in rice.

Keywords

References

  1. Akamatsu, A., Wong, H. L., Fujiwara, M., Okuda, J., Nishide, K., Uno, K., Imai, K., Umemura, K., Kawasaki, T., Kawano, Y. and Shimamoto, K. 2013. An OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 module is an essential early component of chitin-induced rice immunity. Cell Host Microbe. 13:465-476. https://doi.org/10.1016/j.chom.2013.03.007
  2. Antolin-Llovera, M., Ried, M. K., Binder, A. and Parniske, M. 2012. Receptor kinase signaling pathways in plant-microbe interactions. Annu. Rev. Phytopathol. 50:451-473. https://doi.org/10.1146/annurev-phyto-081211-173002
  3. Bagnaresi, P., Biselli, C., Orru, L., Urso, S., Crispino, L., Abbruscato, P., Piffanelli, P., Lupotto, E., Cattivelli, L. and Vale, G. 2012. Comparative transcriptome profling of the early response to Magnaporthe oryzae in durable resistant vs susceptible rice (Oryza sativa L.) genotypes. PLoS One. 7:e51609. https://doi.org/10.1371/journal.pone.0051609
  4. Berens, M. L., Berry, H. M., Mine, A., Argueso, C. T. and Tsuda, K. 2017. Evolution of hormone signaling networks in plant defense. Annu. Rev. Phytopathol. 55:401-425. https://doi.org/10.1146/annurev-phyto-080516-035544
  5. Bilgin, D. D., Zavala, J. A., Zhu, J., Clough, S. J., Ort, D. R. and DeLUCIA, E. H. 2010. Biotic stress globally downregulates photosynthesis genes. Plant Cell Environ. 33:1597-1613. https://doi.org/10.1111/j.1365-3040.2010.02167.x
  6. Boller, T. and Felix, G. 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60:379-406. https://doi.org/10.1146/annurev.arplant.57.032905.105346
  7. Boller, T. and He, S. Y. 2009. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science. 324:742-744. https://doi.org/10.1126/science.1171647
  8. Bolton, M. D. 2009. Primary metabolism and plant defense-fuel for the fre. Mol. Plant. Microbe Interact. 22:487-497. https://doi.org/10.1094/MPMI-22-5-0487
  9. Boutrot, F. and Zipfel, C. 2017. Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annu. Rev. Phytopathol. 55:257-286. https://doi.org/10.1146/annurev-phyto-080614-120106
  10. Browse, J. 2009. Jasmonate passes muster: a receptor and targets for the defense hormone. Annu. Rev. Plant Biol. 60:183-205. https://doi.org/10.1146/annurev.arplant.043008.092007
  11. Chen, K., Fan, B., Du, L. and Chen, Z. 2004. Activation of hypersensitive cell death by pathogen-induced receptor-like protein kinases from Arabidopsis. Plant Mol. Biol. 56:271-283. https://doi.org/10.1007/s11103-004-3381-2
  12. Chujo, T., Takai, R., Akimoto-Tomiyama, C., Ando, S., Minami, E., Nagamura, Y., Kaku, H., Shibuya, N., Yasuda, M., Nakashita, H., Umemura, K., Okada, A., Okada, K., Nojiri, H. and Yamane, H. 2007. Involvement of the elicitor-induced gene OsWRKY53 in the expression of defense-related genes in rice. Biochim. Biophys. Acta BBA - Gene Struct. Expr. 1769:497-505. https://doi.org/10.1016/j.bbaexp.2007.04.006
  13. Dodds, P. N. and Rathjen, J. P. 2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11:539-548.
  14. Eckardt, N. A. 2011. Induction of phytoalexin biosynthesis: WRKY33 is a target of MAPK signaling. Plant Cell. 23:1190-1190. https://doi.org/10.1105/tpc.111.230413
  15. Eulgem, T. and Somssich, I. E. 2007. Networks of WRKY transcription factors in defense signaling. Curr. Opin. Plant Biol. 10:366-371. https://doi.org/10.1016/j.pbi.2007.04.020
  16. Gaderer, R., Bonazza, K. and Seidl-Seiboth, V. 2014. Cerato-platanins: a fungal protein family with intriguing properties and application potential. Appl. Microbiol. Biotechnol. 98:4795-4803. https://doi.org/10.1007/s00253-014-5690-y
  17. Glazebrook, J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43:205-227. https://doi.org/10.1146/annurev.phyto.43.040204.135923
  18. Gomez-Gomez, L. and Boller, T. 2000. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor fagellin in Arabidopsis. Mol. Cell. 5:1003-1011. https://doi.org/10.1016/S1097-2765(00)80265-8
  19. Helliwell, E. E., Wang, Q. and Yang, Y. 2013. Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani. Plant Biotechnol. J. 11:33-42. https://doi.org/10.1111/pbi.12004
  20. Hong, Y., Yang, Y., Zhang, H., Huang, L., Li, D. and Song, F. 2017. Overexpression of MoSM1, encoding for an immunity-inducing protein from Magnaporthe oryzae, in rice confers broad-spectrum resistance against fungal and bacterial diseases. Sci. Rep. 7:41037. https://doi.org/10.1038/srep41037
  21. Huang, D. W., Sherman, B. T. and Lempicki, R. A. 2008. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4:44.
  22. Huangfu, J., Li, J., Li, R., Ye, M., Kuai, P., Zhang, T. and Lou, Y. 2016. The transcription factor OsWRKY45 negatively modulates the resistance of rice to the brown planthopper Nilaparvata lugens. Int. J. Mol. Sci. 17:697. https://doi.org/10.3390/ijms17060697
  23. Hwang, S.-H., Kwon, S. I., Jang, J.-Y., Fang, I. L., Lee, H., Choi, C., Park, S., Ahn, I., Bae, S. and Hwang, D.-J. 2016. Os-WRKY51, a rice transcription factor, functions as a positive regulator in defense response against Xanthomonas oryzae pv. oryzae. Plant Cell Rep. 35:1975-1985. https://doi.org/10.1007/s00299-016-2012-0
  24. Jain, M., Nijhawan, A., Tyagi, A. K. and Khurana, J. P. 2006. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem. Biophys. Res. Commun. 345:646-651. https://doi.org/10.1016/j.bbrc.2006.04.140
  25. Jeong, J. S., Mitchell, T. K. and Dean, R. A. 2007. The Magnaporthe grisea snodprot1 homolog, MSP1, is required for virulence. FEMS Microbiol. Lett. 273:157-165. https://doi.org/10.1111/j.1574-6968.2007.00796.x
  26. Jones, J. D. G. and Dangl, J. L. 2006. The plant immune system. Nature. 444:323-329. https://doi.org/10.1038/nature05286
  27. Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M. and Tanabe, M. 2014. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 42:D199-D205. https://doi.org/10.1093/nar/gkt1076
  28. Kangasjarvi, S., Neukermans, J., Li, S., Aro, E.-M. and Noctor, G. 2012. Photosynthesis, photorespiration, and light signalling in defence responses. J. Exp. Bot. 63:1619-1636. https://doi.org/10.1093/jxb/err402
  29. Kim, J.-A., Cho, K., Singh, R., Jung, Y.-H., Jeong, S.-H., Kim, S.-H., Lee, J.-E., Cho, Y.-S., Agrawal, G. K., Rakwal, R., Tamogami, S., Kersten, B., Jeon, J.-S., An, G. and Jwa, N.-S. 2009a. Rice OsACDR1 (Oryza sativa accelerated cell death and resistance 1) is a potential positive regulator of fungal disease resistance. Mol. Cells. 28:431-439. https://doi.org/10.1007/s10059-009-0161-5
  30. Kim, S. T., Kang, Y. H., Wang, Y., Wu, J., Park, Z. Y., Rakwal, R., Agrawal, G. K., Lee, S. Y. and Kang, K. Y. 2009b. Secretome analysis of differentially induced proteins in rice suspension-cultured cells triggered by rice blast fungus and elicitor. Proteomics. 9:1302-1313. https://doi.org/10.1002/pmic.200800589
  31. Kim, S. T., Kim, S. G., Hwang, D. H., Kang, S. Y., Kim, H. J., Lee, B. H., Lee, J. J. and Kang, K. Y. 2004. Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea. Proteomics. 4:3569-3578. https://doi.org/10.1002/pmic.200400999
  32. Liu, J., Chen, X., Liang, X., Zhou, X., Yang, F., Liu, J., He, S. Y. and Guo, Z. 2016. Alternative splicing of rice WRKY62 and WRKY76 transcription factor genes in pathogen defense. Plant Physiol. 171:1427-1442.
  33. Liu, L.-J., Zheng, H.-Y., Jiang, F., Guo, W. and Zhou, S.-T. 2014a. Comparative transcriptional analysis of asexual and sexual morphs reveals possible mechanisms in reproductive polyphenism of the cotton aphid. PLoS One. 9:e99506. https://doi.org/10.1371/journal.pone.0099506
  34. Liu, W., Liu, J., Triplett, L., Leach, J. E. and Wang, G.-L. 2014b. Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu. Rev. Phytopathol. 52:213-241. https://doi.org/10.1146/annurev-phyto-102313-045926
  35. Liu, X., Bai, X., Wang, X. and Chu, C. 2007. OsWRKY71, a rice transcription factor, is involved in rice defense response. J. Plant Physiol. 164:969-979. https://doi.org/10.1016/j.jplph.2006.07.006
  36. van Loon, L. C., Rep, M. and Pieterse, C. M. 2006. Signifcance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44:135-162. https://doi.org/10.1146/annurev.phyto.44.070505.143425
  37. Luti, S., Caselli, A., Taiti, C., Bazihizina, N., Gonnelli, C., Mancuso, S. and Pazzagli, L. 2016. PAMP activity of cerato-platanin during plant interaction: an-Omic Approach. Int. J. Mol. Sci. 17:866. https://doi.org/10.3390/ijms17060866
  38. Major, I. T., Nicole, M.-C., Duplessis, S. and Seguin, A. 2010. Photosynthetic and respiratory changes in leaves of poplar elicited by rust infection. Photosynth. Res. 104:41-48. https://doi.org/10.1007/s11120-009-9507-2
  39. Matsushita, A., Inoue, H., Goto, S., Nakayama, A., Sugano, S., Hayashi, N. and Takatsuji, H. 2013. Nuclear ubiquitin proteasome degradation affects WRKY45 function in the rice defense program. Plant J. 73:302-313. https://doi.org/10.1111/tpj.12035
  40. Meng, X. and Zhang, S. 2013. MAPK Cascades in Plant Disease Resistance Signaling. Annu. Rev. Phytopathol. 51:245-266. https://doi.org/10.1146/annurev-phyto-082712-102314
  41. Niks, R. E., Qi, X. and Marcel, T. C. 2015. Quantitative resistance to biotrophic flamentous plant pathogens: concepts, misconceptions, and mechanisms. Annu. Rev. Phytopathol. 53:445-470. https://doi.org/10.1146/annurev-phyto-080614-115928
  42. Pazzagli, L., Seidl-Seiboth, V., Barsottini, M., Vargas, W. A., Scala, A. and Mukherjee, P. K. 2014. Cerato-platanins: elicitors and effectors. Plant Sci. 228:79-87. https://doi.org/10.1016/j.plantsci.2014.02.009
  43. Peng, Y., Bartley, L. E., Chen, X., Dardick, C., Chern, M., Ruan, R., Canlas, P. E. and Ronald, P. C. 2008. OsWRKY62 is a negative regulator of basal and Xa21-mediated defense against Xanthomonas oryzae pv. oryzae in rice. Mol. Plant. 1:446-458. https://doi.org/10.1093/mp/ssn024
  44. Roberts, M. R. and Paul, N. D. 2006. Seduced by the dark side: integrating molecular and ecological perspectives on the infuence of light on plant defence against pests and pathogens. New Phytol. 170:677-699. https://doi.org/10.1111/j.1469-8137.2006.01707.x
  45. Rojas, C. M., Senthil-Kumar, M., Tzin, V. and Mysore, K. S. 2014. Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Front. Plant Sci. 5:17.
  46. Ryu, H.-S., Han, M., Lee, S.-K., Cho, J.-I., Ryoo, N., Heu, S., Lee, Y.-H., Bhoo, S. H., Wang, G.-L., Hahn, T.-R. and Jeon, J.-S. 2006. A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response. Plant Cell Rep. 25:836-847. https://doi.org/10.1007/s00299-006-0138-1
  47. Shah, J., Kachroo, P., Nandi, A. and Klessig, D. F. 2001. A recessive mutation in the Arabidopsis SSI2 gene confers SA-and NPR1-independent expression of PR genes and resistance against bacterial and oomycete pathogens. Plant J. 25:563-574. https://doi.org/10.1046/j.1365-313x.2001.00992.x
  48. Shen, X., Liu, H., Yuan, B., Li, X., Xu, C. and Wang, S. 2011. OsEDR1 negatively regulates rice bacterial resistance via activation of ethylene biosynthesis. Plant Cell Environ. 34:179-191. https://doi.org/10.1111/j.1365-3040.2010.02219.x
  49. Shimono, M., Koga, H., Akagi, A., Hayashi, N., Goto, S., Sawada, M., Kurihara, T., Matsushita, A., Sugano, S., Jiang, C.-J., Kaku, H., Inoue, H. and Takatsuji, H. 2012. Rice WRKY45 plays important roles in fungal and bacterial disease resistance. Mol. Plant Pathol. 13:83-94. https://doi.org/10.1111/j.1364-3703.2011.00732.x
  50. Shiu, S.-H., Karlowski, W. M., Pan, R., Tzeng, Y.-H., Mayer, K. F. X. and Li, W.-H. 2004. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell. 16:1220-1234. https://doi.org/10.1105/tpc.020834
  51. Silverman, P., Seskar, M., Kanter, D., Schweizer, P., Metraux, J. P. and Raskin, I. 1995. Salicylic acid in rice (biosynthesis, conjugation, and possible role). Plant Physiol. 108:633-639. https://doi.org/10.1104/pp.108.2.633
  52. Song, F. and Goodman, R. M. 2002. OsBIMK1, a rice MAP kinase gene involved in disease resistance responses. Planta. 215:997-1005. https://doi.org/10.1007/s00425-002-0794-5
  53. Song, W.-Y., Wang, G.-L., Chen, L.-L., Kim, H.-S., Pi, L.-Y., Holsten, T., Gardner, J., Wang, B., Zhai, W.-X., Zhu, L.-H., Fauquet, C. and Ronald, P. 1995. A receptor kinase-like pro- tein encoded by the rice disease resistance gene, Xa21. Science. 270:1804-1806. https://doi.org/10.1126/science.270.5243.1804
  54. Talbot, N. J. 2003. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu. Rev. Microbiol. 57:177- 202. https://doi.org/10.1146/annurev.micro.57.030502.090957
  55. Thimm, O., Blasing, O., Gibon, Y., Nagel, A., Meyer, S., Kruger, P., Selbig, J., Mlluer, L. A., Rhee, S. Y. and Stitt, M. 2004. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 37:914-939. https://doi.org/10.1111/j.1365-313X.2004.02016.x
  56. Wang, C., Wang, G., Zhang, C., Zhu, P., Dai, H., Yu, N., He, Z., Xu, L. and Wang, E. 2017. OsCERK1-mediated chitin perception and immune signaling requires receptor-like cytoplasmic kinase 185 to activate an MAPK cascade in rice. Mol. Plant. 10:619-633. https://doi.org/10.1016/j.molp.2017.01.006
  57. Wang, Q., Li, J., Hu, L., Zhang, T., Zhang, G. and Lou, Y. 2013. OsMPK3 positively regulates the JA signaling pathway and plant resistance to a chewing herbivore in rice. Plant Cell Rep. 32:1075-1084. https://doi.org/10.1007/s00299-013-1389-2
  58. Wang, Y., Kwon, S. J., Wu, J., Choi, J., Lee, Y.-H., Agrawal, G. K., Tamogami, S., Rakwal, R., Park, S.-R., Kim, B.-G., Jung, K.-H., Kang, K. Y., Kim, S. G. and Kim, S. T. 2014. Transcriptome analysis of early responsive genes in rice during Magnaporthe oryzae infection. Plant Pathol. J. 30:343-354. https://doi.org/10.5423/PPJ.OA.06.2014.0055
  59. Wang, Y., Wu, J., Kim, S. G., Tsuda, K., Gupta, R., Park, S.- Y., Kim, S. T. and Kang, K. Y. 2016. Magnaporthe oryzae-secreted protein MSP1 induces cell death and elicits defense responses in rice. Mol. Plant. Microbe Interact. 29:299-312. https://doi.org/10.1094/MPMI-12-15-0266-R
  60. Wei, T., Ou, B., Li, J., Zhao, Y., Guo, D., Zhu, Y., Chen, Z., Gu, H., Li, C., Qin, G. and Qu, L.-J. 2013. Transcriptional profling of rice early response to Magnaporthe oryzae identifed Os-WRKYs as important regulators in rice blast resistance. PLoS One. 8:e59720. https://doi.org/10.1371/journal.pone.0059720
  61. Yamada, K., Yamaguchi, K., Shirakawa, T., Nakagami, H., Mine, A., Ishikawa, K., Fujiwara, M., Narusaka, M., Narusaka, Y., Ichimura, K., Kobayashi, Y., Matsui, H., Nomura, Y., Nomoto, M., Tada, Y., Fukao, Y., Fukamizo, T., Tsuda, K., Shirasu, K., Shibuya, N. and Kawasaki, T. 2016. The Arabidopsis CERK1-associated kinase PBL27 connects chitin perception to MAPK activation. EMBO J. 35:2468-2483. https://doi.org/10.15252/embj.201694248
  62. Yamada, S., Kano, A., Tamaoki, D., Miyamoto, A., Shishido, H., Miyoshi, S., Taniguchi, S., Akimitsu, K. and Gomi, K. 2012. Involvement of OsJAZ8 in jasmonate-induced resistance to bacterial blight in rice. Plant Cell Physiol. 53:2060-2072. https://doi.org/10.1093/pcp/pcs145
  63. Yang, D.-L., Yang, Y. and He, Z. 2013. Roles of plant hormones and their interplay in rice immunity. Mol. Plant. 6:675-685. https://doi.org/10.1093/mp/sst056
  64. Yang, D.-L., Yao, J., Mei, C.-S., Tong, X.-H., Zeng, L.-J., Li, Q., Xiao, L.-T., Sun, T., Li, J., Deng, X.-W., Lee, C. M., Thomashow, M. F., Yang, Y., He, Z. and He, S. Y. 2012. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc. Natl. Acad. Sci. 109:E1192-E1200. https://doi.org/10.1073/pnas.1201616109
  65. Yang, G., Tang, L., Gong, Y., Xie, J., Fu, Y., Jiang, D., Li, G., Collinge, D. B., Chen, W. and Cheng, J. 2018. A cerato-platanin protein SsCP1 targets plant PR1 and contributes to virulence of Sclerotinia sclerotiorum. New Phytol. 217:739-755. https://doi.org/10.1111/nph.14842
  66. Yang, Y., Zhang, H., Li, G., Li, W., Wang, X. and Song, F. 2009. Ectopic expression of MgSM1, a Cerato-platanin family protein from Magnaporthe grisea, confers broad-spectrum disease resistance in Arabidopsis. Plant Biotechnol. J. 7:763-777. https://doi.org/10.1111/j.1467-7652.2009.00442.x
  67. Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J. D. G., Boller, T. and Felix, G. 2006. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell. 125:749-760. https://doi.org/10.1016/j.cell.2006.03.037