References
- Akamatsu, A., Wong, H. L., Fujiwara, M., Okuda, J., Nishide, K., Uno, K., Imai, K., Umemura, K., Kawasaki, T., Kawano, Y. and Shimamoto, K. 2013. An OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 module is an essential early component of chitin-induced rice immunity. Cell Host Microbe. 13:465-476. https://doi.org/10.1016/j.chom.2013.03.007
- Antolin-Llovera, M., Ried, M. K., Binder, A. and Parniske, M. 2012. Receptor kinase signaling pathways in plant-microbe interactions. Annu. Rev. Phytopathol. 50:451-473. https://doi.org/10.1146/annurev-phyto-081211-173002
- Bagnaresi, P., Biselli, C., Orru, L., Urso, S., Crispino, L., Abbruscato, P., Piffanelli, P., Lupotto, E., Cattivelli, L. and Vale, G. 2012. Comparative transcriptome profling of the early response to Magnaporthe oryzae in durable resistant vs susceptible rice (Oryza sativa L.) genotypes. PLoS One. 7:e51609. https://doi.org/10.1371/journal.pone.0051609
- Berens, M. L., Berry, H. M., Mine, A., Argueso, C. T. and Tsuda, K. 2017. Evolution of hormone signaling networks in plant defense. Annu. Rev. Phytopathol. 55:401-425. https://doi.org/10.1146/annurev-phyto-080516-035544
- Bilgin, D. D., Zavala, J. A., Zhu, J., Clough, S. J., Ort, D. R. and DeLUCIA, E. H. 2010. Biotic stress globally downregulates photosynthesis genes. Plant Cell Environ. 33:1597-1613. https://doi.org/10.1111/j.1365-3040.2010.02167.x
- Boller, T. and Felix, G. 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60:379-406. https://doi.org/10.1146/annurev.arplant.57.032905.105346
- Boller, T. and He, S. Y. 2009. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science. 324:742-744. https://doi.org/10.1126/science.1171647
- Bolton, M. D. 2009. Primary metabolism and plant defense-fuel for the fre. Mol. Plant. Microbe Interact. 22:487-497. https://doi.org/10.1094/MPMI-22-5-0487
- Boutrot, F. and Zipfel, C. 2017. Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annu. Rev. Phytopathol. 55:257-286. https://doi.org/10.1146/annurev-phyto-080614-120106
- Browse, J. 2009. Jasmonate passes muster: a receptor and targets for the defense hormone. Annu. Rev. Plant Biol. 60:183-205. https://doi.org/10.1146/annurev.arplant.043008.092007
- Chen, K., Fan, B., Du, L. and Chen, Z. 2004. Activation of hypersensitive cell death by pathogen-induced receptor-like protein kinases from Arabidopsis. Plant Mol. Biol. 56:271-283. https://doi.org/10.1007/s11103-004-3381-2
- Chujo, T., Takai, R., Akimoto-Tomiyama, C., Ando, S., Minami, E., Nagamura, Y., Kaku, H., Shibuya, N., Yasuda, M., Nakashita, H., Umemura, K., Okada, A., Okada, K., Nojiri, H. and Yamane, H. 2007. Involvement of the elicitor-induced gene OsWRKY53 in the expression of defense-related genes in rice. Biochim. Biophys. Acta BBA - Gene Struct. Expr. 1769:497-505. https://doi.org/10.1016/j.bbaexp.2007.04.006
- Dodds, P. N. and Rathjen, J. P. 2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11:539-548.
- Eckardt, N. A. 2011. Induction of phytoalexin biosynthesis: WRKY33 is a target of MAPK signaling. Plant Cell. 23:1190-1190. https://doi.org/10.1105/tpc.111.230413
- Eulgem, T. and Somssich, I. E. 2007. Networks of WRKY transcription factors in defense signaling. Curr. Opin. Plant Biol. 10:366-371. https://doi.org/10.1016/j.pbi.2007.04.020
- Gaderer, R., Bonazza, K. and Seidl-Seiboth, V. 2014. Cerato-platanins: a fungal protein family with intriguing properties and application potential. Appl. Microbiol. Biotechnol. 98:4795-4803. https://doi.org/10.1007/s00253-014-5690-y
- Glazebrook, J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43:205-227. https://doi.org/10.1146/annurev.phyto.43.040204.135923
- Gomez-Gomez, L. and Boller, T. 2000. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor fagellin in Arabidopsis. Mol. Cell. 5:1003-1011. https://doi.org/10.1016/S1097-2765(00)80265-8
- Helliwell, E. E., Wang, Q. and Yang, Y. 2013. Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani. Plant Biotechnol. J. 11:33-42. https://doi.org/10.1111/pbi.12004
- Hong, Y., Yang, Y., Zhang, H., Huang, L., Li, D. and Song, F. 2017. Overexpression of MoSM1, encoding for an immunity-inducing protein from Magnaporthe oryzae, in rice confers broad-spectrum resistance against fungal and bacterial diseases. Sci. Rep. 7:41037. https://doi.org/10.1038/srep41037
- Huang, D. W., Sherman, B. T. and Lempicki, R. A. 2008. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4:44.
- Huangfu, J., Li, J., Li, R., Ye, M., Kuai, P., Zhang, T. and Lou, Y. 2016. The transcription factor OsWRKY45 negatively modulates the resistance of rice to the brown planthopper Nilaparvata lugens. Int. J. Mol. Sci. 17:697. https://doi.org/10.3390/ijms17060697
- Hwang, S.-H., Kwon, S. I., Jang, J.-Y., Fang, I. L., Lee, H., Choi, C., Park, S., Ahn, I., Bae, S. and Hwang, D.-J. 2016. Os-WRKY51, a rice transcription factor, functions as a positive regulator in defense response against Xanthomonas oryzae pv. oryzae. Plant Cell Rep. 35:1975-1985. https://doi.org/10.1007/s00299-016-2012-0
- Jain, M., Nijhawan, A., Tyagi, A. K. and Khurana, J. P. 2006. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem. Biophys. Res. Commun. 345:646-651. https://doi.org/10.1016/j.bbrc.2006.04.140
- Jeong, J. S., Mitchell, T. K. and Dean, R. A. 2007. The Magnaporthe grisea snodprot1 homolog, MSP1, is required for virulence. FEMS Microbiol. Lett. 273:157-165. https://doi.org/10.1111/j.1574-6968.2007.00796.x
- Jones, J. D. G. and Dangl, J. L. 2006. The plant immune system. Nature. 444:323-329. https://doi.org/10.1038/nature05286
- Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M. and Tanabe, M. 2014. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 42:D199-D205. https://doi.org/10.1093/nar/gkt1076
- Kangasjarvi, S., Neukermans, J., Li, S., Aro, E.-M. and Noctor, G. 2012. Photosynthesis, photorespiration, and light signalling in defence responses. J. Exp. Bot. 63:1619-1636. https://doi.org/10.1093/jxb/err402
- Kim, J.-A., Cho, K., Singh, R., Jung, Y.-H., Jeong, S.-H., Kim, S.-H., Lee, J.-E., Cho, Y.-S., Agrawal, G. K., Rakwal, R., Tamogami, S., Kersten, B., Jeon, J.-S., An, G. and Jwa, N.-S. 2009a. Rice OsACDR1 (Oryza sativa accelerated cell death and resistance 1) is a potential positive regulator of fungal disease resistance. Mol. Cells. 28:431-439. https://doi.org/10.1007/s10059-009-0161-5
- Kim, S. T., Kang, Y. H., Wang, Y., Wu, J., Park, Z. Y., Rakwal, R., Agrawal, G. K., Lee, S. Y. and Kang, K. Y. 2009b. Secretome analysis of differentially induced proteins in rice suspension-cultured cells triggered by rice blast fungus and elicitor. Proteomics. 9:1302-1313. https://doi.org/10.1002/pmic.200800589
- Kim, S. T., Kim, S. G., Hwang, D. H., Kang, S. Y., Kim, H. J., Lee, B. H., Lee, J. J. and Kang, K. Y. 2004. Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea. Proteomics. 4:3569-3578. https://doi.org/10.1002/pmic.200400999
- Liu, J., Chen, X., Liang, X., Zhou, X., Yang, F., Liu, J., He, S. Y. and Guo, Z. 2016. Alternative splicing of rice WRKY62 and WRKY76 transcription factor genes in pathogen defense. Plant Physiol. 171:1427-1442.
- Liu, L.-J., Zheng, H.-Y., Jiang, F., Guo, W. and Zhou, S.-T. 2014a. Comparative transcriptional analysis of asexual and sexual morphs reveals possible mechanisms in reproductive polyphenism of the cotton aphid. PLoS One. 9:e99506. https://doi.org/10.1371/journal.pone.0099506
- Liu, W., Liu, J., Triplett, L., Leach, J. E. and Wang, G.-L. 2014b. Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu. Rev. Phytopathol. 52:213-241. https://doi.org/10.1146/annurev-phyto-102313-045926
- Liu, X., Bai, X., Wang, X. and Chu, C. 2007. OsWRKY71, a rice transcription factor, is involved in rice defense response. J. Plant Physiol. 164:969-979. https://doi.org/10.1016/j.jplph.2006.07.006
- van Loon, L. C., Rep, M. and Pieterse, C. M. 2006. Signifcance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44:135-162. https://doi.org/10.1146/annurev.phyto.44.070505.143425
- Luti, S., Caselli, A., Taiti, C., Bazihizina, N., Gonnelli, C., Mancuso, S. and Pazzagli, L. 2016. PAMP activity of cerato-platanin during plant interaction: an-Omic Approach. Int. J. Mol. Sci. 17:866. https://doi.org/10.3390/ijms17060866
- Major, I. T., Nicole, M.-C., Duplessis, S. and Seguin, A. 2010. Photosynthetic and respiratory changes in leaves of poplar elicited by rust infection. Photosynth. Res. 104:41-48. https://doi.org/10.1007/s11120-009-9507-2
- Matsushita, A., Inoue, H., Goto, S., Nakayama, A., Sugano, S., Hayashi, N. and Takatsuji, H. 2013. Nuclear ubiquitin proteasome degradation affects WRKY45 function in the rice defense program. Plant J. 73:302-313. https://doi.org/10.1111/tpj.12035
- Meng, X. and Zhang, S. 2013. MAPK Cascades in Plant Disease Resistance Signaling. Annu. Rev. Phytopathol. 51:245-266. https://doi.org/10.1146/annurev-phyto-082712-102314
- Niks, R. E., Qi, X. and Marcel, T. C. 2015. Quantitative resistance to biotrophic flamentous plant pathogens: concepts, misconceptions, and mechanisms. Annu. Rev. Phytopathol. 53:445-470. https://doi.org/10.1146/annurev-phyto-080614-115928
- Pazzagli, L., Seidl-Seiboth, V., Barsottini, M., Vargas, W. A., Scala, A. and Mukherjee, P. K. 2014. Cerato-platanins: elicitors and effectors. Plant Sci. 228:79-87. https://doi.org/10.1016/j.plantsci.2014.02.009
- Peng, Y., Bartley, L. E., Chen, X., Dardick, C., Chern, M., Ruan, R., Canlas, P. E. and Ronald, P. C. 2008. OsWRKY62 is a negative regulator of basal and Xa21-mediated defense against Xanthomonas oryzae pv. oryzae in rice. Mol. Plant. 1:446-458. https://doi.org/10.1093/mp/ssn024
- Roberts, M. R. and Paul, N. D. 2006. Seduced by the dark side: integrating molecular and ecological perspectives on the infuence of light on plant defence against pests and pathogens. New Phytol. 170:677-699. https://doi.org/10.1111/j.1469-8137.2006.01707.x
- Rojas, C. M., Senthil-Kumar, M., Tzin, V. and Mysore, K. S. 2014. Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Front. Plant Sci. 5:17.
- Ryu, H.-S., Han, M., Lee, S.-K., Cho, J.-I., Ryoo, N., Heu, S., Lee, Y.-H., Bhoo, S. H., Wang, G.-L., Hahn, T.-R. and Jeon, J.-S. 2006. A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response. Plant Cell Rep. 25:836-847. https://doi.org/10.1007/s00299-006-0138-1
- Shah, J., Kachroo, P., Nandi, A. and Klessig, D. F. 2001. A recessive mutation in the Arabidopsis SSI2 gene confers SA-and NPR1-independent expression of PR genes and resistance against bacterial and oomycete pathogens. Plant J. 25:563-574. https://doi.org/10.1046/j.1365-313x.2001.00992.x
- Shen, X., Liu, H., Yuan, B., Li, X., Xu, C. and Wang, S. 2011. OsEDR1 negatively regulates rice bacterial resistance via activation of ethylene biosynthesis. Plant Cell Environ. 34:179-191. https://doi.org/10.1111/j.1365-3040.2010.02219.x
- Shimono, M., Koga, H., Akagi, A., Hayashi, N., Goto, S., Sawada, M., Kurihara, T., Matsushita, A., Sugano, S., Jiang, C.-J., Kaku, H., Inoue, H. and Takatsuji, H. 2012. Rice WRKY45 plays important roles in fungal and bacterial disease resistance. Mol. Plant Pathol. 13:83-94. https://doi.org/10.1111/j.1364-3703.2011.00732.x
- Shiu, S.-H., Karlowski, W. M., Pan, R., Tzeng, Y.-H., Mayer, K. F. X. and Li, W.-H. 2004. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell. 16:1220-1234. https://doi.org/10.1105/tpc.020834
- Silverman, P., Seskar, M., Kanter, D., Schweizer, P., Metraux, J. P. and Raskin, I. 1995. Salicylic acid in rice (biosynthesis, conjugation, and possible role). Plant Physiol. 108:633-639. https://doi.org/10.1104/pp.108.2.633
- Song, F. and Goodman, R. M. 2002. OsBIMK1, a rice MAP kinase gene involved in disease resistance responses. Planta. 215:997-1005. https://doi.org/10.1007/s00425-002-0794-5
- Song, W.-Y., Wang, G.-L., Chen, L.-L., Kim, H.-S., Pi, L.-Y., Holsten, T., Gardner, J., Wang, B., Zhai, W.-X., Zhu, L.-H., Fauquet, C. and Ronald, P. 1995. A receptor kinase-like pro- tein encoded by the rice disease resistance gene, Xa21. Science. 270:1804-1806. https://doi.org/10.1126/science.270.5243.1804
- Talbot, N. J. 2003. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu. Rev. Microbiol. 57:177- 202. https://doi.org/10.1146/annurev.micro.57.030502.090957
- Thimm, O., Blasing, O., Gibon, Y., Nagel, A., Meyer, S., Kruger, P., Selbig, J., Mlluer, L. A., Rhee, S. Y. and Stitt, M. 2004. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 37:914-939. https://doi.org/10.1111/j.1365-313X.2004.02016.x
- Wang, C., Wang, G., Zhang, C., Zhu, P., Dai, H., Yu, N., He, Z., Xu, L. and Wang, E. 2017. OsCERK1-mediated chitin perception and immune signaling requires receptor-like cytoplasmic kinase 185 to activate an MAPK cascade in rice. Mol. Plant. 10:619-633. https://doi.org/10.1016/j.molp.2017.01.006
- Wang, Q., Li, J., Hu, L., Zhang, T., Zhang, G. and Lou, Y. 2013. OsMPK3 positively regulates the JA signaling pathway and plant resistance to a chewing herbivore in rice. Plant Cell Rep. 32:1075-1084. https://doi.org/10.1007/s00299-013-1389-2
- Wang, Y., Kwon, S. J., Wu, J., Choi, J., Lee, Y.-H., Agrawal, G. K., Tamogami, S., Rakwal, R., Park, S.-R., Kim, B.-G., Jung, K.-H., Kang, K. Y., Kim, S. G. and Kim, S. T. 2014. Transcriptome analysis of early responsive genes in rice during Magnaporthe oryzae infection. Plant Pathol. J. 30:343-354. https://doi.org/10.5423/PPJ.OA.06.2014.0055
- Wang, Y., Wu, J., Kim, S. G., Tsuda, K., Gupta, R., Park, S.- Y., Kim, S. T. and Kang, K. Y. 2016. Magnaporthe oryzae-secreted protein MSP1 induces cell death and elicits defense responses in rice. Mol. Plant. Microbe Interact. 29:299-312. https://doi.org/10.1094/MPMI-12-15-0266-R
- Wei, T., Ou, B., Li, J., Zhao, Y., Guo, D., Zhu, Y., Chen, Z., Gu, H., Li, C., Qin, G. and Qu, L.-J. 2013. Transcriptional profling of rice early response to Magnaporthe oryzae identifed Os-WRKYs as important regulators in rice blast resistance. PLoS One. 8:e59720. https://doi.org/10.1371/journal.pone.0059720
- Yamada, K., Yamaguchi, K., Shirakawa, T., Nakagami, H., Mine, A., Ishikawa, K., Fujiwara, M., Narusaka, M., Narusaka, Y., Ichimura, K., Kobayashi, Y., Matsui, H., Nomura, Y., Nomoto, M., Tada, Y., Fukao, Y., Fukamizo, T., Tsuda, K., Shirasu, K., Shibuya, N. and Kawasaki, T. 2016. The Arabidopsis CERK1-associated kinase PBL27 connects chitin perception to MAPK activation. EMBO J. 35:2468-2483. https://doi.org/10.15252/embj.201694248
- Yamada, S., Kano, A., Tamaoki, D., Miyamoto, A., Shishido, H., Miyoshi, S., Taniguchi, S., Akimitsu, K. and Gomi, K. 2012. Involvement of OsJAZ8 in jasmonate-induced resistance to bacterial blight in rice. Plant Cell Physiol. 53:2060-2072. https://doi.org/10.1093/pcp/pcs145
- Yang, D.-L., Yang, Y. and He, Z. 2013. Roles of plant hormones and their interplay in rice immunity. Mol. Plant. 6:675-685. https://doi.org/10.1093/mp/sst056
- Yang, D.-L., Yao, J., Mei, C.-S., Tong, X.-H., Zeng, L.-J., Li, Q., Xiao, L.-T., Sun, T., Li, J., Deng, X.-W., Lee, C. M., Thomashow, M. F., Yang, Y., He, Z. and He, S. Y. 2012. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc. Natl. Acad. Sci. 109:E1192-E1200. https://doi.org/10.1073/pnas.1201616109
- Yang, G., Tang, L., Gong, Y., Xie, J., Fu, Y., Jiang, D., Li, G., Collinge, D. B., Chen, W. and Cheng, J. 2018. A cerato-platanin protein SsCP1 targets plant PR1 and contributes to virulence of Sclerotinia sclerotiorum. New Phytol. 217:739-755. https://doi.org/10.1111/nph.14842
- Yang, Y., Zhang, H., Li, G., Li, W., Wang, X. and Song, F. 2009. Ectopic expression of MgSM1, a Cerato-platanin family protein from Magnaporthe grisea, confers broad-spectrum disease resistance in Arabidopsis. Plant Biotechnol. J. 7:763-777. https://doi.org/10.1111/j.1467-7652.2009.00442.x
- Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J. D. G., Boller, T. and Felix, G. 2006. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell. 125:749-760. https://doi.org/10.1016/j.cell.2006.03.037