• Title/Summary/Keyword: immune-oncology therapy

Search Result 51, Processing Time 0.021 seconds

Radiotherapy and immune checkpoint blockades: a snapshot in 2016

  • Koo, Taeryool;Kim, In Ah
    • Radiation Oncology Journal
    • /
    • v.34 no.4
    • /
    • pp.250-259
    • /
    • 2016
  • Immune checkpoint blockades including monoclonal antibodies (mAbs) of cytotoxic T-lymphocyte antigen-4 (CTLA-4), programmed death-1 (PD-1), and programmed death-ligand 1 (PD-L1) have been emerged as a promising anticancer therapy. Several immune checkpoint blockades have been approved by US Food and Drug Administration (FDA), and have shown notable success in clinical trials for patients with advanced melanoma and non-small cell lung cancer. Radiotherapy is a promising combination partner of immune checkpoint blockades due to its potent pro-immune effect. This review will cover the current issue and the future perspectives for combined with radiotherapy and immune checkpoint blockades based upon the available preclinical and clinical data.

Immune Checkpoint Inhibitors in 10 Years: Contribution of Basic Research and Clinical Application in Cancer Immunotherapy

  • Jii Bum Lee;Hye Ryun Kim;Sang-Jun Ha
    • IMMUNE NETWORK
    • /
    • v.22 no.1
    • /
    • pp.2.1-2.22
    • /
    • 2022
  • Targeting immune evasion via immune checkpoint pathways has changed the treatment paradigm in cancer. Since CTLA-4 antibody was first approved in 2011 for treatment of metastatic melanoma, eight immune checkpoint inhibitors (ICIs) centered on PD-1 pathway blockade are approved and currently administered to treat 18 different types of cancers. The first part of the review focuses on the history of CTLA-4 and PD-1 discovery and the preclinical experiments that demonstrated the possibility of anti-CTLA-4 and anti-PD-1 as anti-cancer therapeutics. The approval process of clinical trials and clinical utility of ICIs are described, specifically focusing on non-small cell lung cancer (NSCLC), in which immunotherapies are most actively applied. Additionally, this review covers the combination therapy and novel ICIs currently under investigation in NSCLC. Although ICIs are now key pivotal cancer therapy option in clinical settings, they show inconsistent therapeutic efficacy and limited responsiveness. Thus, newly proposed action mechanism to overcome the limitations of ICIs in a near future are also discussed.

Clinical Perspectives to Overcome Acquired Resistance to Anti-Programmed Death-1 and Anti-Programmed Death Ligand-1 Therapy in Non-Small Cell Lung Cancer

  • Lee, Yong Jun;Lee, Jii Bum;Ha, Sang-Jun;Kim, Hye Ryun
    • Molecules and Cells
    • /
    • v.44 no.5
    • /
    • pp.363-373
    • /
    • 2021
  • Immune checkpoint inhibitors have changed the paradigm of treatment options for non-small cell lung cancer (NSCLC). Monoclonal antibodies targeting programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) have gained wide attention for their application, which has been shown to result in prolonged survival. Nevertheless, only a limited subset of patients show partial or complete response to PD-1 therapy, and patients who show a response eventually develop resistance to immunotherapy. This article aims to provide an overview of the mechanisms of acquired resistance to anti-PD-1/PD-L1 therapy from the perspective of tumor cells and the surrounding microenvironment. In addition, we address the potential therapeutic targets and ongoing clinical trials, focusing mainly on NSCLC.

Extracranial systemic antitumor response through the abscopal effect induced by brain radiation in a patient with metastatic melanoma

  • D'Andrea, Mark A.;Reddy, G.K.
    • Radiation Oncology Journal
    • /
    • v.37 no.4
    • /
    • pp.302-308
    • /
    • 2019
  • The abscopal effect is a term that has been used to describe the phenomenon in which localized radiation therapy treatment of a tumor lesion triggers a spontaneous regression of metastatic lesion(s) at a non-irradiated distant site(s). Radiation therapy induced abscopal effects are believed to be mediated by activation and stimulation of the immune system. However, due to the brain's distinctive immune microenvironment, extracranial abscopal responses following cranial radiation therapy have rarely been reported. In this report, we describe the case of 42-year-old female patient with metastatic melanoma who experienced an abscopal response following her cranial radiation therapy for her brain metastasis. The patient initially presented with a stage III melanoma of the right upper skin of her back. Approximately 5 years after her diagnosis, the patient developed a large metastatic lesion in her upper right pectoral region of her chest wall and axilla. Since the patient's tumor was positive for BRAF and MEK, targeted therapy with dabrafenib and trametinib was initiated. However, the patient experienced central nervous system (CNS) symptoms of headache and disequilibrium and developed brain metastases prior to the start of targeted therapy. The patient received radiation therapy to a dose of 30 Gy delivered in 15 fractions to her brain lesions while the patient was on dabrafenib and trametinib therapy. The patient's CNS metastases improved significantly within weeks of her therapy. The patient's non-irradiated large extracranial chest mass and axilla mass also shrank substantially demonstrating the abscopal effect during her CNS radiation therapy. Following radiation therapy of her residual chest lesions, the patient was disease free clinically and her CNS lesions had regressed. However, when the radiation therapy ended and the patient continued her targeted therapy alone, recurrence outside of her previously treated fields was noted. The disease recurrence could be due to the possibility of developing BRAF resistance clones to the BRAF targeted therapy. The patient died eventually due to wide spread systemic disease recurrence despite targeted therapy.

Successful Treatment of Advanced Gastric Cancer with Brain Metastases through an Abscopal Effect by Radiation and Immune Checkpoint Inhibitor Therapy

  • Muto, Momotaro;Nakata, Hirotaka;Ishigaki, Kenichi;Tachibana, Shion;Yoshida, Moe;Muto, Mizue;Yanagawa, Nobuyuki;Okumura, Toshikatsu
    • Journal of Gastric Cancer
    • /
    • v.21 no.3
    • /
    • pp.319-324
    • /
    • 2021
  • The abscopal effect refers to the phenomenon in which local radiotherapy is associated with the regression of metastatic cancer that is distantly located from the irradiated site. Here, we present a case of a patient with advanced gastric cancer and brain metastases who was successfully treated with brain radiotherapy and anti-programmed death-1 (PD-1) therapy-induced abscopal effect. Although anti-PD-1 therapy alone could not prevent disease progression, the metastatic lesions in the brain and also in the abdominal lymph node showed a drastic response after brain radiotherapy and anti-PD-1 therapy. To our knowledge, this is the first reported case of successful treatment of advanced gastric cancer with multiple brain and abdominal lymph node metastases, possibly through anti-PD-1 therapy combined with brain radiotherapy-induced abscopal effect. We suggest that the combination of brain radiotherapy and anti-PD-1 therapy may be considered as a therapeutic option for advanced gastric cancer, especially when there is brain metastasis.

Recent Progress in Immunotherapy for Advanced Gastric Cancer (진행성 위암에 대한 면역 요법의 최신 지견)

  • Byeong Seok Sohn
    • Journal of Digestive Cancer Research
    • /
    • v.10 no.1
    • /
    • pp.22-30
    • /
    • 2022
  • Immune checkpoint inhibition has been established as a new treatment option for various types of carcinoma, and many clinical trials are being actively conducted as a treatment for advanced or metastatic gastric cancer, either as a monotherapy with an immune checkpoint inhibitor or as a combination therapy with standard chemotherapy. In the CheckMate-649 clinical trial to confirm the efficacy of the combination of nivolumab and chemotherapy (FP) in advanced gastric cancer and gastroesophageal junction cancer, nivolumab group showed improvement in overall survival in programmed death ligand 1-positive cancer patients compared with placebo group. Also, the combination therapy of pembrolizumab, trastuzumab and chemotherapy (FP) in first-line treatment was tested through the KEYNOTE-811 trial. The pembrolizumab group showed 22.7% of improvement in objective response rate compared with placebo group. Accordingly, the combination of nivolumab/pembrolizumab with standard chemotherapy was approved for the first-line treatment. In KEYNOTE-059 trials for patients with progressive disease after at least two lines of chemotherapy, pembrolizumab monotherapy showed improvement in objective response rate and overall survival, and the use of pembrolizumab was approved for the third-line or more treatment. In this article, we review the result of clinical trials related to immune checkpoint inhibitors that have been recently introduced in the treatment of gastric cancer.

What's New in Molecular Targeted Therapies for Thyroid Cancer? (갑상선암 표적치료의 최신지견)

  • Min, Seonyoung;Kang, Hyunseok
    • Korean Journal of Head & Neck Oncology
    • /
    • v.37 no.2
    • /
    • pp.1-9
    • /
    • 2021
  • Thyroid cancer refers to various cancers arising from thyroid gland. Differentiated thyroid cancers (DTCs) include papillary, follicular, and Hurthle cell carcinomas and represent cancers retain normal thyroid functions such as iodine uptake. Radioactive iodine (RAI) is generally used for upfront treatment of metastatic DTCs, but RAI refractory DTCs remain to be clinical challenges. Sorafenib and lenvatinib were approved for the treatment of RAI refractory DTCs and more recently, genomics-based targeted therapies have been developed for NTRK and RET gene fusion-positive DTCs. Poorly differentiated and anaplastic thyroid cancers (ATCs) are extremely challenging diseases with aggressive courses. BRAF/MEK inhibition has been proven to be highly effective in BRAF V600E mutation-positive ATCs and immune checkpoint inhibitors have shown promising activities. Medullary thyroid cancers, which arise from parafollicular cells of thyroid, represent a unique subset of thyroid cancer and mainly driven by RET mutation. In addition to vandetanib and cabozantinib, highly specific RET inhibitors such as selpercatinib and pralsetinib have demonstrated impressive activity and are in clinical use.

What's New in Molecular Targeted Therapies for Head and Neck Cancer? (두경부암의 최신 표적치료)

  • Lee, Seoyoung;Kim, Hye Ryun
    • Korean Journal of Head & Neck Oncology
    • /
    • v.37 no.2
    • /
    • pp.11-17
    • /
    • 2021
  • Head and neck cancer is the 6th most frequently diagnosed solid tumor in the world. Alcohol consumption, smoking, and HPV infection are associated with the incidence of head and neck squamous cell carcinoma (HNSCC). Although a multidisciplinary approach is a key strategy for the treatment of locally advanced HNSCC, systemic therapy is the mainstream of recurrent or metastatic HNSCC treatment. Stage IV HNSCC has a relatively poor prognosis with median overall survival of around one year. There have been many clinical trials to investigate the efficacy of target agents in the treatment of HNSCC. In the HPV-negative HNSCC, TP53 and CDKN2A are the most commonly mutated genes. In the HPV-positive HNSCC, the PI3K pathway is frequently altered. EGFR, PI3K, cell cycle pathway, MET, HRAS, and IL6/JAK/STAT pathway are explored targets in HNSCC. In this study, we review the target pathways and agents under research. We also introduce here umbrella trials of recurrent or metastatic HNSCC conducted by the Korea Cancer Study Group. The combination of target agents with immune checkpoint inhibitors or cytotoxic chemotherapies would be a future step in the precision medicine of HNSCC treatment.

Immune Checkpoint Inhibitor with or without Radiotherapy in Melanoma Patients with Brain Metastases: A Systematic Review and Meta-Analysis

  • Pyeong Hwa Kim;Chong Hyun Suh;Ho Sung Kim;Kyung Won Kim;Dong Yeong Kim;Eudocia Q. Lee;Ayal A. Aizer;Jeffrey P. Guenette;Raymond Y. Huang
    • Korean Journal of Radiology
    • /
    • v.22 no.4
    • /
    • pp.584-595
    • /
    • 2021
  • Objective: Immune checkpoint inhibitor (ICI) therapy has shown activity against melanoma brain metastases. Recently, promising results have also been reported for ICI combination therapy and ICI combined with radiotherapy. We aimed to evaluate radiologic response and adverse event rates of these therapeutic options by a systematic review and meta-analysis. Materials and Methods: A systematic literature search of Ovid-MEDLINE and EMBASE was performed up to October 12, 2019 and included studies evaluating the intracranial objective response rates (ORRs) and/or disease control rates (DCRs) of ICI with or without radiotherapy for treating melanoma brain metastases. We also evaluated safety-associated outcomes. Results: Eleven studies with 14 cohorts (3 with ICI combination therapy; 5 with ICI combined with radiotherapy; 6 with ICI monotherapy) were included. ICI combination therapy {pooled ORR, 53% (95% confidence interval [CI], 44-61%); DCR, 57% (95% CI, 49-66%)} and ICI combined with radiotherapy (pooled ORR, 42% [95% CI, 31-54%]; DCR, 85% [95% CI, 63-95%]) showed higher local efficacy compared to ICI monotherapy (pooled ORR, 15% [95% CI, 11-20%]; DCR, 26% [95% CI, 21-32%]). The grade 3 or 4 adverse event rate was significantly higher with ICI combination therapy (60%; 95% CI, 52-67%) compared to ICI monotherapy (11%; 95% CI, 8-17%) and ICI combined with radiotherapy (4%; 95% CI, 1-19%). Grade 3 or 4 central nervous system (CNS)-related adverse event rates were not different (9% in ICI combination therapy; 8% in ICI combined with radiotherapy; 5% in ICI monotherapy). Conclusion: ICI combination therapy or ICI combined with radiotherapy showed better local efficacy than ICI monotherapy for treating melanoma brain metastasis. The grade 3 or 4 adverse event rate was highest with ICI combination therapy, and the CNS-related grade 3 or 4 event rate was similar. Prospective trials will be necessary to compare the efficacy of ICI combination therapy and ICI combined with radiotherapy.