DOI QR코드

DOI QR Code

Clinical Perspectives to Overcome Acquired Resistance to Anti-Programmed Death-1 and Anti-Programmed Death Ligand-1 Therapy in Non-Small Cell Lung Cancer

  • Lee, Yong Jun (Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine) ;
  • Lee, Jii Bum (Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine) ;
  • Ha, Sang-Jun (Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University) ;
  • Kim, Hye Ryun (Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine)
  • Received : 2021.02.25
  • Accepted : 2021.03.23
  • Published : 2021.05.31

Abstract

Immune checkpoint inhibitors have changed the paradigm of treatment options for non-small cell lung cancer (NSCLC). Monoclonal antibodies targeting programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) have gained wide attention for their application, which has been shown to result in prolonged survival. Nevertheless, only a limited subset of patients show partial or complete response to PD-1 therapy, and patients who show a response eventually develop resistance to immunotherapy. This article aims to provide an overview of the mechanisms of acquired resistance to anti-PD-1/PD-L1 therapy from the perspective of tumor cells and the surrounding microenvironment. In addition, we address the potential therapeutic targets and ongoing clinical trials, focusing mainly on NSCLC.

Keywords

Acknowledgement

This work was supported by National Research Foundation of Korea (NRF) grants funded by the Korean Government (MSIT) (NRF-2017M3A9E9072669, 2017M3A9E8029717, NRF-2019M3A9B6065231, 2019M3A9B6065221, 2018R1A2A1A05076997, 2017R1A5A1014560).

References

  1. Abiko, K., Matsumura, N., Hamanishi, J., Horikawa, N., Murakami, R., Yamaguchi, K., Yoshioka, Y., Baba, T., Konishi, I., and Mandai, M. (2015). IFN-γ from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer. Br. J. Cancer 112, 1501-1509. https://doi.org/10.1038/bjc.2015.101
  2. Alfaro, C., Teijeira, A., Onate, C., Perez, G., Sanmamed, M.F., Andueza, M.P., Alignani, D., Labiano, S., Azpilikueta, A., Rodriguez-Paulete, A., et al. (2016). Tumor-produced interleukin-8 attracts human myeloid-derived suppressor cells and elicits extrusion of neutrophil extracellular traps (NETs). Clin. Cancer Res. 22, 3924-3936. https://doi.org/10.1158/1078-0432.CCR-15-2463
  3. Arenas-Ramirez, N., Sahin, D., and Boyman, O. (2018). Epigenetic mechanisms of tumor resistance to immunotherapy. Cell. Mol. Life Sci. 75, 4163-4176. https://doi.org/10.1007/s00018-018-2908-7
  4. Arlauckas, S.P., Garris, C.S., Kohler, R.H., Kitaoka, M., Cuccarese, M.F., Yang, K.S., Miller, M.A., Carlson, J.C., Freeman, G.J., Anthony, R.M., et al. (2017). In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy. Sci. Transl. Med. 9, eaal3604. https://doi.org/10.1126/scitranslmed.aal3604
  5. Ashizawa, T., Iizuka, A., Maeda, C., Tanaka, E., Kondou, R., Miyata, H., Sugino, T., Kawata, T., Deguchi, S., Mitsuya, K., et al. (2019). Impact of combination therapy with anti-PD-1 blockade and a STAT3 inhibitor on the tumor-infiltrating lymphocyte status. Immunol. Lett. 216, 43-50. https://doi.org/10.1016/j.imlet.2019.10.003
  6. Bach, E.A., Aguet, M., and Schreiber, R.D. (1997). The IFNγ receptor: a paradigm for cytokine receptor signaling. Annu. Rev. Immunol. 15, 563-591. https://doi.org/10.1146/annurev.immunol.15.1.563
  7. Bagchi, S., Yuan, R., and Engleman, E.G. (2021). Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu. Rev. Pathol. 16, 223-249. https://doi.org/10.1146/annurev-pathol-042020-042741
  8. Baxter, E., Windloch, K., Gannon, F., and Lee, J.S. (2014). Epigenetic regulation in cancer progression. Cell Biosci. 4, 45. https://doi.org/10.1186/2045-3701-4-45
  9. Chanmee, T., Ontong, P., Konno, K., and Itano, N. (2014). Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel) 6, 1670-1690. https://doi.org/10.3390/cancers6031670
  10. Chauvin, J.M., Pagliano, O., Fourcade, J., Sun, Z., Wang, H., Sander, C., Kirkwood, J.M., Chen, T.H., Maurer, M., Korman, A.J., et al. (2015). TIGIT and PD-1 impair tumor antigen-specific CD8+ T cells in melanoma patients. J. Clin. Invest. 125, 2046-2058. https://doi.org/10.1172/JCI80445
  11. Chen, P.L., Roh, W., Reuben, A., Cooper, Z.A., Spencer, C.N., Prieto, P.A., Miller, J.P., Bassett, R.L., Gopalakrishnan, V., Wani, K., et al. (2016). Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 6, 827-837. https://doi.org/10.1158/2159-8290.CD-15-1545
  12. Ettinger, D.S., Wood, D.E., Aggarwal, C., Aisner, D.L., Akerley, W., Bauman, J.R., Bharat, A., Bruno, D.S., Chang, J.Y., Chirieac, L.R., et al. (2019). NCCN guidelines insights: non-small cell lung cancer, version 1.2020: featured updates to the NCCN guidelines. J. Natl. Compr. Canc. Netw. 17, 1464-1472. https://doi.org/10.6004/jnccn.2019.0059
  13. Fong, L., Forde, P.M., Powderly, J.D., Goldman, J.W., Nemunaitis, J.J., Luke, J.J., Hellmann, M.D., Kummar, S., Doebele, R.C., Mahadevan, D., et al. (2017). Safety and clinical activity of adenosine A2a receptor (A2aR) antagonist, CPI-444, in anti-PD1/PDL1 treatment-refractory renal cell (RCC) and non-small cell lung cancer (NSCLC) patients. J. Clin. Oncol. 35(15 Suppl), 3004.
  14. Galon, J. and Bruni, D. (2019). Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 18, 197-218. https://doi.org/10.1038/s41573-018-0007-y
  15. Garcia-Diaz, A., Shin, D.S., Moreno, B.H., Saco, J., Escuin-Ordinas, H., Rodriguez, G.A., Zaretsky, J.M., Sun, L., Hugo, W., Wang, X., et al. (2017). Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 19, 1189-1201. https://doi.org/10.1016/j.celrep.2017.04.031
  16. Genova, C., Boccardo, S., Mora, M., Rijavec, E., Biello, F., Rossi, G., Tagliamento, M., Dal Bello, M.G., Coco, S., Alama, A., et al. (2019). Correlation between B7-H4 and survival of non-small-cell lung cancer patients treated with nivolumab. J. Clin. Med. 8, 1566. https://doi.org/10.3390/jcm8101566
  17. Gettinger, S., Choi, J., Hastings, K., Truini, A., Datar, I., Sowell, R., Wurtz, A., Dong, W., Cai, G., Melnick, M.A., et al. (2017). Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov. 7, 1420-1435. https://doi.org/10.1158/2159-8290.CD-17-0593
  18. Hanks, B.A., Holtzhausen, A., Evans, K., Heid, M., and Blobe, G.C. (2014). Combinatorial TGF-β signaling blockade and anti-CTLA-4 antibody immunotherapy in a murine BRAFV600E-PTEN-/- transgenic model of melanoma. J. Clin. Oncol. 32(15 Suppl), 3011. https://doi.org/10.1200/jco.2014.32.15_suppl.3011
  19. Hellmann, M.D., Friedman, C.F., and Wolchok, J.D. (2016). Combinatorial cancer immunotherapies. Adv. Immunol. 130, 251-277. https://doi.org/10.1016/bs.ai.2015.12.005
  20. Hou, A., Hou, K., Huang, Q., Lei, Y., and Chen, W. (2020). Targeting myeloid-derived suppressor cell, a promising strategy to overcome resistance to immune checkpoint inhibitors. Front. Immunol. 11, 783. https://doi.org/10.3389/fimmu.2020.00783
  21. Hu-Lieskovan, S. and Ribas, A. (2017). New combination strategies using PD-1/L1 checkpoint inhibitors as a backbone. Cancer J. 23, 10-22. https://doi.org/10.1097/PPO.0000000000000246
  22. Jenkins, R.W., Barbie, D.A., and Flaherty, K.T. (2018). Mechanisms of resistance to immune checkpoint inhibitors. Br. J. Cancer 118, 9-16. https://doi.org/10.1038/bjc.2017.434
  23. Kanwal, R. and Gupta, S. (2012). Epigenetic modifications in cancer. Clin. Genet. 81, 303-311. https://doi.org/10.1111/j.1399-0004.2011.01809.x
  24. Kim, D., Lee, Y.S., Kim, D.H., and Bae, S.C. (2020). Lung cancer staging and associated genetic and epigenetic events. Mol. Cells 43, 1-9. https://doi.org/10.14348/molcells.2020.2246
  25. Koyama, S., Akbay, E.A., Li, Y.Y., Herter-Sprie, G.S., Buczkowski, K.A., Richards, W.G., Gandhi, L., Redig, A.J., Rodig, S.J., Asahina, H., et al. (2016). Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat. Commun. 7, 10501. https://doi.org/10.1038/ncomms10501
  26. Mahoney, K.M., Rennert, P.D., and Freeman, G.J. (2015). Combination cancer immunotherapy and new immunomodulatory targets. Nat. Rev. Drug Discov. 14, 561-584. https://doi.org/10.1038/nrd4591
  27. Manguso, R.T., Pope, H.W., Zimmer, M.D., Brown, F.D., Yates, K.B., Miller, B.C., Collins, N.B., Bi, K., LaFleur, M.W., Juneja, V.R., et al. (2017). In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547, 413-418. https://doi.org/10.1038/nature23270
  28. Mariathasan, S., Turley, S.J., Nickles, D., Castiglioni, A., Yuen, K., Wang, Y., Kadel, E.E., III, Koeppen, H., Astarita, J.L., Cubas, R., et al. (2018). TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544-548. https://doi.org/10.1038/nature25501
  29. Mazzone, R., Zwergel, C., Mai, A., and Valente, S. (2017). Epi-drugs in combination with immunotherapy: a new avenue to improve anticancer efficacy. Clin. Epigenetics 9, 59. https://doi.org/10.1186/s13148-017-0358-y
  30. Meder, L., Schuldt, P., Thelen, M., Schmitt, A., Dietlein, F., Klein, S., Borchmann, S., Wennhold, K., Vlasic, I., Oberbeck, S., et al. (2018). Combined VEGF and PD-L1 blockade displays synergistic treatment effects in an autochthonous mouse model of small cell lung cancer. Cancer Res. 78, 4270-4281. https://doi.org/10.1158/0008-5472.CAN-17-2176
  31. Meyer, C., Cagnon, L., Costa-Nunes, C.M., Baumgaertner, P., Montandon, N., Leyvraz, L., Michielin, O., Romano, E., and Speiser, D.E. (2014). Frequencies of circulating MDSC correlate with clinical outcome of melanoma patients treated with ipilimumab. Cancer Immunol. Immunother. 63, 247-257. https://doi.org/10.1007/s00262-013-1508-5
  32. Miao, D., Margolis, C.A., Gao, W., Voss, M.H., Li, W., Martini, D.J., Norton, C., Bosse, D., Wankowicz, S.M., Cullen, D., et al. (2018). Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 359, 801-806. https://doi.org/10.1126/science.aan5951
  33. Mok, T.S.K., Wu, Y.L., Kudaba, I., Kowalski, D.M., Cho, B.C., Turna, H.Z., Castro, G., Jr., Srimuninnimit, V., Laktionov, K.K., Bondarenko, I., et al. (2019). Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet 393, 1819-1830. https://doi.org/10.1016/S0140-6736(18)32409-7
  34. Neel, J.C., Humbert, L., and Lebrun, J.J. (2012). The dual role of TGFβ in human cancer: from tumor suppression to cancer metastasis. ISRN Mol. Biol. 2012, 381428. https://doi.org/10.5402/2012/381428
  35. Pan, D., Kobayashi, A., Jiang, P., Ferrari de Andrade, L., Tay, R.E., Luoma, A.M., Tsoucas, D., Qiu, X., Lim, K., Rao, P., et al. (2018). A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science 359, 770-775. https://doi.org/10.1126/science.aao1710
  36. Pauken, K.E., Sammons, M.A., Odorizzi, P.M., Manne, S., Godec, J., Khan, O., Drake, A.M., Chen, Z., Sen, D.R., Kurachi, M., et al. (2016). Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354, 1160-1165. https://doi.org/10.1126/science.aaf2807
  37. Peng, W., Chen, J.Q., Liu, C., Malu, S., Creasy, C., Tetzlaff, M.T., Xu, C., McKenzie, J.A., Zhang, C., Liang, X., et al. (2016). Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov. 6, 202-216. https://doi.org/10.1158/2159-8290.CD-15-0283
  38. Pereira, C., Gimenez-Xavier, P., Pros, E., Pajares, M.J., Moro, M., Gomez, A., Navarro, A., Condom, E., Moran, S., Gomez-Lopez, G., et al. (2017). Genomic profiling of patient-derived xenografts for lung cancer identifies B2M inactivation impairing immunorecognition. Clin. Cancer Res. 23, 3203-3213. https://doi.org/10.1158/1078-0432.CCR-16-1946-T
  39. Platten, M., von Knebel Doeberitz, N., Oezen, I., Wick, W., and Ochs, K. (2015). Cancer immunotherapy by targeting IDO1/TDO and their downstream effectors. Front. Immunol. 5, 673. https://doi.org/10.3389/fimmu.2014.00673
  40. Pourmir, I., Gazeau, B., de Saint Basile, H., and Fabre, E. (2020). Biomarkers of resistance to immune checkpoint inhibitors in non-small-cell lung cancer: myth or reality? Cancer Drug Resist. 3, 276-286.
  41. Remon, J., Passiglia, F., Ahn, M.J., Barlesi, F., Forde, P.M., Garon, E.B., Gettinger, S., Goldberg, S.B., Herbst, R.S., Horn, L., et al. (2020). Immune checkpoint inhibitors in thoracic malignancies: review of the existing evidence by an IASLC expert panel and recommendations. J. Thorac. Oncol. 15, 914-947. https://doi.org/10.1016/j.jtho.2020.03.006
  42. Ren, D., Hua, Y., Yu, B., Ye, X., He, Z., Li, C., Wang, J., Mo, Y., Wei, X., Chen, Y., et al. (2020). Predictive biomarkers and mechanisms underlying resistance to PD1/PD-L1 blockade cancer immunotherapy. Mol. Cancer 19, 19. https://doi.org/10.1186/s12943-020-1144-6
  43. Ribas, A., Shin, D.S., Zaretsky, J., Frederiksen, J., Cornish, A., Avramis, E., Seja, E., Kivork, C., Siebert, J., Kaplan-Lefko, P., et al. (2016). PD-1 blockade expands intratumoral memory T cells. Cancer Immunol. Res. 4, 194-203. https://doi.org/10.1158/2326-6066.CIR-15-0210
  44. Ricciuti, B., Leonardi, G.C., Puccetti, P., Fallarino, F., Bianconi, V., Sahebkar, A., Baglivo, S., Chiari, R., and Pirro, M. (2019). Targeting indoleamine-2, 3-dioxygenase in cancer: scientific rationale and clinical evidence. Pharmacol. Ther. 196, 105-116. https://doi.org/10.1016/j.pharmthera.2018.12.004
  45. Rodriguez-Abreu, D., Johnson, M.L., Hussein, M.A., Cobo, M., Patel, A.J., Secen, N.M., Lee, K.H., Massuti, B., Hiret, S., Yang, J.C.H., et al. (2020). Primary analysis of a randomized, double-blind, phase II study of the anti-TIGIT antibody tiragolumab (tira) plus atezolizumab (atezo) versus placebo plus atezo as first-line (1L) treatment in patients with PD-L1-selected NSCLC (CITYSCAPE). J. Clin. Oncol. 38(15 Suppl), 9503. https://doi.org/10.1200/JCO.2020.38.15_suppl.9503
  46. Sakaguchi, S., Yamaguchi, T., Nomura, T., and Ono, M. (2008). Regulatory T cells and immune tolerance. Cell 133, 775-787. https://doi.org/10.1016/j.cell.2008.05.009
  47. Saleh, R. and Elkord, E. (2019). Treg-mediated acquired resistance to immune checkpoint inhibitors. Cancer Lett. 457, 168-179. https://doi.org/10.1016/j.canlet.2019.05.003
  48. Sharma, P., Hu-Lieskovan, S., Wargo, J.A., and Ribas, A. (2017). Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707-723. https://doi.org/10.1016/j.cell.2017.01.017
  49. Shin, D.S., Zaretsky, J.M., Escuin-Ordinas, H., Garcia-Diaz, A., Hu-Lieskovan, S., Kalbasi, A., Grasso, C.S., Hugo, W., Sandoval, S., Torrejon, D.Y., et al. (2017). Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 7, 188-201. https://doi.org/10.1158/2159-8290.CD-16-1223
  50. Socinski, M.A., Jotte, R.M., Cappuzzo, F., Orlandi, F., Stroyakovskiy, D., Nogami, N., Rodriguez-Abreu, D., Moro-Sibilot, D., Thomas, C.A., Barlesi, F., et al. (2018). Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N. Engl. J. Med. 378, 2288-2301. https://doi.org/10.1056/NEJMoa1716948
  51. Spranger, S., Koblish, H.K., Horton, B., Scherle, P.A., Newton, R., and Gajewski, T.F. (2014). Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8+ T cells directly within the tumor microenvironment. J. Immunother. Cancer 2, 3. https://doi.org/10.1186/2051-1426-2-3
  52. Stanley, E.R. and Chitu, V. (2014). CSF-1 receptor signaling in myeloid cells. Cold Spring Harb. Perspect. Biol. 6, a021857. https://doi.org/10.1101/cshperspect.a021857
  53. Steven, A., Fisher, S.A., and Robinson, B.W. (2016). Immunotherapy for lung cancer. Respirology 21, 821-833. https://doi.org/10.1111/resp.12789
  54. Su, T., Zhang, Y., Valerie, K., Wang, X.Y., Lin, S., and Zhu, G. (2019). STING activation in cancer immunotherapy. Theranostics 9, 7759-7771. https://doi.org/10.7150/thno.37574
  55. Sucker, A., Zhao, F., Pieper, N., Heeke, C., Maltaner, R., Stadtler, N., Real, B., Bielefeld, N., Howe, S., Weide, B., et al. (2017). Acquired IFNγ resistance impairs anti-tumor immunity and gives rise to T-cell-resistant melanoma lesions. Nat. Commun. 8, 15440. https://doi.org/10.1038/ncomms15440
  56. Sucker, A., Zhao, F., Real, B., Heeke, C., Bielefeld, N., Maβen, S., Horn, S., Moll, I., Maltaner, R., Horn, P.A., et al. (2014). Genetic evolution of T-cell resistance in the course of melanoma progression. Clin. Cancer Res. 20, 6593-6604. https://doi.org/10.1158/1078-0432.CCR-14-0567
  57. Taube, J.M., Anders, R.A., Young, G.D., Xu, H., Sharma, R., McMiller, T.L., Chen, S., Klein, A.P., Pardoll, D.M., Topalian, S.L., et al. (2012). Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci. Transl. Med. 4, 127ra37. https://doi.org/10.1126/scitranslmed.3003689
  58. Thommen, D.S., Schreiner, J., Muller, P., Herzig, P., Roller, A., Belousov, A., Umana, P., Pisa, P., Klein, C., Bacac, M., et al. (2015). Progression of lung cancer is associated with increased dysfunction of T cells defined by coexpression of multiple inhibitory receptors. Cancer Immunol. Res. 3, 1344-1355. https://doi.org/10.1158/2326-6066.CIR-15-0097
  59. Toor, S.M., Nair, V.S., Decock, J., and Elkord, E. (2020). Immune checkpoints in the tumor microenvironment. Semin. Cancer Biol. 65, 1-12. https://doi.org/10.1016/j.semcancer.2019.06.021
  60. Topalian, S.L., Drake, C.G., and Pardoll, D.M. (2015). Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27, 450-461. https://doi.org/10.1016/j.ccell.2015.03.001
  61. Toso, A., Revandkar, A., Di Mitri, D., Guccini, I., Proietti, M., Sarti, M., Pinton, S., Zhang, J., Kalathur, M., Civenni, G., et al. (2014). Enhancing chemotherapy efficacy in Pten-deficient prostate tumors by activating the senescence-associated antitumor immunity. Cell Rep. 9, 75-89. https://doi.org/10.1016/j.celrep.2014.08.044
  62. Vanpouille-Box, C., Diamond, J.M., Pilones, K.A., Zavadil, J., Babb, J.S., Formenti, S.C., Barcellos-Hoff, M.H., and Demaria, S. (2015). TGFβ is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res. 75, 2232-2242. https://doi.org/10.1158/0008-5472.CAN-14-3511
  63. Vijayan, D., Young, A., Teng, M.W., and Smyth, M.J. (2017). Targeting immunosuppressive adenosine in cancer. Nat. Rev. Cancer 17, 709-724. https://doi.org/10.1038/nrc.2017.86
  64. Voron, T., Colussi, O., Marcheteau, E., Pernot, S., Nizard, M., Pointet, A.L., Latreche, S., Bergaya, S., Benhamouda, N., Tanchot, C., et al. (2015). VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J. Exp. Med. 212, 139-148. https://doi.org/10.1084/jem.20140559
  65. Wang, F., Wang, S., and Zhou, Q. (2020). The resistance mechanisms of lung cancer immunotherapy. Front. Oncol. 10, 568059. https://doi.org/10.3389/fonc.2020.568059
  66. Xu, L.J., Ma, Q., Zhu, J., Li, J., Xue, B.X., Gao, J., Sun, C.Y., Zang, Y.C., Zhou, Y.B., Yang, D.R., et al. (2018). Combined inhibition of JAK1, 2/Stat3-PD-L1 signaling pathway suppresses the immune escape of castration-resistant prostate cancer to NK cells in hypoxia. Mol. Med. Rep. 17, 8111-8120.
  67. Yamaguchi, H. and Hung, M.C. (2014). Regulation and role of EZH2 in cancer. Cancer Res. Treat. 46, 209-222. https://doi.org/10.4143/crt.2014.46.3.209
  68. Young, A., Ngiow, S.F., Gao, Y., Patch, A.M., Barkauskas, D.S., Messaoudene, M., Lin, G., Coudert, J.D., Stannard, K.A., Zitvogel, L., et al. (2018). A2AR adenosine signaling suppresses natural killer cell maturation in the tumor microenvironment. Cancer Res. 78, 1003-1016. https://doi.org/10.1158/0008-5472.CAN-17-2826
  69. Yuen, K.C., Liu, L.F., Gupta, V., Madireddi, S., Keerthivasan, S., Li, C., Rishipathak, D., Williams, P., Kadel, E.E., 3rd, Koeppen, H., et al. (2020). High systemic and tumor-associated IL-8 correlates with reduced clinical benefit of PD-L1 blockade. Nat. Med. 26, 693-698. https://doi.org/10.1038/s41591-020-0860-1
  70. Zang, X., Loke, P., Kim, J., Murphy, K., Waitz, R., and Allison, J.P. (2003). B7x: a widely expressed B7 family member that inhibits t cell activation. Proc. Natl. Acad. Sci. U. S. A. 100, 10388-10392. https://doi.org/10.1073/pnas.1434299100
  71. Zaretsky, J.M., Garcia-Diaz, A., Shin, D.S., Escuin-Ordinas, H., Hugo, W., Hu-Lieskovan, S., Torrejon, D.Y., Abril-Rodriguez, G., Sandoval, S., Barthly, L., et al. (2016). Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819-829. https://doi.org/10.1056/NEJMoa1604958
  72. Zauderer, M.G., Szlosarek, P.W., Le Moulec, S., Popat, S., Taylor, P., Planchard, D., Scherpereel, A., Jahan, T.M., Koczywas, M., Forster, M., et al. (2020). Safety and efficacy of tazemetostat, an enhancer of zeste-homolog 2 inhibitor, in patients with relapsed or refractory malignant mesothelioma. J. Clin. Oncol. 38(15 Suppl), 9058. https://doi.org/10.1200/JCO.2020.38.15_suppl.9058
  73. Zhang, H., Conrad, D.M., Butler, J.J., Zhao, C., Blay, J., and Hoskin, D.W. (2004). Adenosine acts through A2 receptors to inhibit IL-2-induced tyrosine phosphorylation of STAT5 in T lymphocytes: role of cyclic adenosine 3', 5'-monophosphate and phosphatases. J. Immunol. 173, 932-944. https://doi.org/10.4049/jimmunol.173.2.932
  74. Zhu, Y., Knolhoff, B.L., Meyer, M.A., Nywening, T.M., West, B.L., Luo, J., Wang-Gillam, A., Goedegebuure, S.P., Linehan, D.C., and DeNardo, D.G. (2014). CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 74, 5057-5069. https://doi.org/10.1158/0008-5472.CAN-13-3723
  75. Zingg, D., Arenas-Ramirez, N., Sahin, D., Rosalia, R.A., Antunes, A.T., Haeusel, J., Sommer, L., and Boyman, O. (2017). The histone methyltransferase Ezh2 controls mechanisms of adaptive resistance to tumor immunotherapy. Cell Rep. 20, 854-867. https://doi.org/10.1016/j.celrep.2017.07.007