• Title/Summary/Keyword: immobilized liquid membrane

Search Result 7, Processing Time 0.023 seconds

Development of Membrane Strip Assay System for Lipoprotein Cholesterol Based on Liquid-Phase Enzyme Reactions (액상 효소반응을 이용한 Membrane Strip 형 Cholesterol 측정시스템의 개발)

  • 신인수;목락선;장미라;백세환
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.577-584
    • /
    • 1998
  • A sensitive membrane strip assay for plasma lipoprotein cholesterol that can be performed without handling reagents has been investigated. We previously developed an assay system with immobilized enzymes (cholesterol esterase and cholesterol oxidase) on the surfaces of nitrocellulose membrane(1). In such a case, the amount of enzymes present on the membrane was limited by its surface area and, thus, the detection capability was relatively poor (> 50 mg/dL cholesterol). To overcome this problem, we devised a new system with non-immobilized enzymes by placing them within interstitial spaces of a celullose membrane pad in a dry state. Upon contact with sample medium, the enzymes were immediately dissolved and participated in the reactions with cholesterol in a liquid phase. We constructed a user-friendly system consisting of four membrane pads fro sample application, cholesterol decomposition, color development as signal, and medium absorption to invoke a continuous flow (sequential location from the bottom). A sample containing lipoproteins was added into the application pad by capillary action and transferred to the next pad for decomposition. The decomposition pad (namely, enzyme pad) contained a detergent (sodium cholate) for the destruction of lipoprotein particles, the two enzymes for cholesterol decomposition, and a chromogen (3,3'-diaminobenzidine). As a consequence of the enzyme reactions, hydrogen peroxide was produced, and then reacted in the presence of the chromogen with horseradish peroxidase immobilized on the signal generation pad. Finally, a colorimetric signal directly proportional to the cholesterol concentration was produced. The detection limit determined from this system under optimal conditions was at least 2 times lower than of the enzyme-immobilized system.

  • PDF

Removal of Pollutants and Recovery of Toxic Heavy Metals from Wastewater Using Microporous Hollow Fiber Modules

  • Yun, Chang-Han
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1993.04a
    • /
    • pp.25-27
    • /
    • 1993
  • Multiphase equilibrium-based processes for separation and purification generally utilize dispersed systems in which one phase is dispersed in the other as bubbles or drops or thin films. Using microporous membranes, novel techniques have been developed such that multiphase processes can now be carried out in a nondispersive fashion for gas-liquid (Sirkar, 1992) and liquid-liquid (Prasad and Sirkar, 1992) contacting processes. Among such processes, only nondispersive solvent extraction of pollutants using microporous membranes will be of concern here. These processes employ immobilized immiscible phase interfaces at the pore mouths in a microporous membrane. Through such interfaces, solutes are extracted into the solvent as two immiscible phases flow on two sides of a microporous membrane. Many advantages of such a technique over conventional dispersion-based extractors have been summarized (Prasad and Sirkar, 1992).

  • PDF

Facilitated Transport of Cr(VI) through a Supported Liquid Membrane with a Carrier

  • Park, Sang-Wook;Lee, Jae-Wook;Kim, Sung-Soo;Choi, Byoung-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.154-164
    • /
    • 2003
  • This paper has applied a simple model to the mass transfer mechanism of Cr(VI) with crownether in a batch-type, supported liquid membrane module. Concentration at pH 3 are as follows : 0.012 kmol/$m^3{\le}$18-crown-6${\le}$0.036 kmol/$m^3$ and 20 g/$m^3{\le}$ Cr(VI)${\le}$500 g/$m^3$. The measured values of forward- and backward-reaction rate constants between Cr(VI) and 18-crown-6 were used to simulate the model with the mass conservation equation and associated boundary conditions. Comparison between the experimental and simulated facilitated factor of Cr(VI) transport led to classification of reaction regions.

$CO_2/N_2$ mixture gas permeation and separation by liquid membrane immobilized in polyimide microporous membrane (함침 액막을 통한 $CO_2/N_2$ 혼합가스의 투과 및 분리)

  • 민병렬;백창근;박현채;원종옥;강용수
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.46-49
    • /
    • 1998
  • 1. 서론 및 이론적 배경 : 지구 온난화에 의한 생태계 변화의 위해 문제가 대두됨에 따라 온난화의 주요인인 이산화탄소를 발생원으로부터 분리, 회수하는 기술에 대한 관심이 고조되고 있다. 최근에는 이러한 기술 중에서 에너지가 적게 소요되며 환경 친화적인 분리막 공정에 의한 CO$_2$의 효율적인 분리, 회수법이 하나의 대안으로 연구되고 있다. 분리막 기술 중 함침액막법은 고분자막의 장점을 이용하면서도 투과도를 크게 향상시킬 수 있는 장점이 있어 최근에 액막을 이용한 CO$_2$/N$_2$혼합가스의 분리, 회수연구도 수행되고 있다. 순수한 물에 대한 CO$_2$의 용해도는 8x10$^{-6}$/cmHg이며, N$_2$는 1.55x10$^{-7}$/cmHg 로서 대략 50배 정도의 용해도 차를 보이고 있는데 이러한 물에 대한 기체의 높은 용해도 차를 이용하면 효과적으로 CO$_2$를 분리,회수할 수 있을 것으로 기대된다. 본 연구에서는 이러한 물을 함침한 액막을 이용하여 CO$_2$/N$_2$를 분리하였으며 혼합기체의 조성, 기체의 압력 등의 변수가 액막에 의한 CO$_2$의 분리에 미치는 영향을 조사하였다.

  • PDF

Automated Protein-Expression Profiling System using Crude Protein Direct Blotting Method

  • Kobayashi, Hironori;Torikoshi, Yasuhiro;Kawasaki, Yuko;Ishihara, Hideki;Mizumoto, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2356-2361
    • /
    • 2003
  • Proteome research in the medical field is expected to accelerate the understanding of disease mechanism, and to create new diagnostic concept. For protein profiling, this paper proposes a new methodology named CPDIB (Crude Protein Direct Blotting). In the CPDIB procedure, crude protein sample is directly immobilized on a membrane and the expression of protein molecules in the sample are analyzed quantitatively by using a special device called ImmobiChip, where the membrane is used as a field of the immune reaction. The over-all structure of the ImmobiChip is based on the conventional Slot blot device. Mechanical improvement in the air-tightness of the case holding the membrane realizes the direct blotting and results in high performance of stability in the immune reaction. In the measurement of multiple proteins, a dispensing robot is used for increasing the efficiency of handling of liquid. Cooperation of the dispensing robot with the ImmobiChip for immobilizing proteins realizes automated and stable performance of the CPDIB procedure. This paper shows the evaluation of the air-tightness of the ImmobiChip, the ability of analyzing proteins using the CPDIB procedure and the performance of the automated equipment.

  • PDF

Efficient Biotinylation of Nitrocellulose Membrane for Immuno-Filtration Capture Assay

  • Choi, Ki-Bong;Ha, Youn-Chul;Youn, Hee-Ju;Choi, Jung-Do
    • BMB Reports
    • /
    • v.30 no.5
    • /
    • pp.308-314
    • /
    • 1997
  • We investigated biotinylation of nitrocellulose membrane for immuno-filtration capture assay. In order to enhance the efficiency of biotinylation, nitrocellulose membranes were pretreated with several chemicals for the purpose of suitable protein absorption through surface modification. As a signal generating enzyme, urease was used and the concentration of avidin was optimized for the efficient binding kinetics between urease-biotin in liquid phase and biotinylated membrane in solid phase. For effective biotinylation, bovine serum albumin-biotin complexes could be immobilized at a concentration of $370\;{\mu}g$/stick ($4.4\;cm^2$). Among tested chemicals, polylysine (0.25%) showed a significant effect in biotinylation. Polylysine is thought to enhance surface area by extending unbound residues into solution. Time of treatment over 30 min and higher molecular weight of polylysines (58,100 dalton) showed positive effect on the enhancement of biotinylation. The result from this study may be useful for developing a new biosensor and other biofunctional membranes for examining molecular recognition.

  • PDF

Development of Immuno-Analytical System for Microbial Cells by using Dot-Blotter (Dot-Blotter 진공 포획방식에 의한 미생물세포 면역분석시스템의 개발)

  • 목락선;하연철;윤희주;백세환
    • KSBB Journal
    • /
    • v.14 no.1
    • /
    • pp.82-90
    • /
    • 1999
  • In order to eventually fabricate an analytical system for infectious microorganisms, we synthesized major immunochemical components, utilized them for the construction of model system, and investigated an assay concept for bacterial whole cells. For the preparation of system components, a polyclonal antibody, against Salmonella thompson as model analyte, purified by immuno-affinity chromatography was used to chemically link to streptavidin or an enzyme, horseradish peroxidase(HRP). The antibody and streptavidin was modified with sulfosuccinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxylate and N-succinimidyl-3-[2-pyridyldithio]propionate(subsequently activated by dithiotheritol), respectively. The modified components were reacted to synthesize antibody-streptavidin conjugates which were then purified on a two-layer chromatography column of diaminobiotin gel and Sephadex G-100. For antibody-HRP conjugates, HRP molecules were activated by $NalO_4$ oxidation and then coupled to immunoglobulin. After stabilizing with ($NaCNBH_3$, the conjugates were purified by size exclusion chromatography on Biogel A5M column. To devise a model system, such produced components were combined with a dot-blotter in which a nitrocellulose membrane($12{\mu}m$ pre size) with immobilized biotin was already located. The analyte (S. thompson cells) was reacted with the both antibody conjugates in a liquid phase, and the complexes formed were captured on the membrane surfaces by applying vacuum in the bottom compartment of the blotter to invoke biotin-streptavidin reaction. Under optimal conditions, the system enabled to identify the analytical concept for bacterial whole cells, and the lower limit of detection was approximately $1{\mu}g/m{\ell}$($10^5-10^6$ cells/m$m{\ell}$). The controlling factors were the concentrations of each antibody conjugate that caused agglutination in the presence of analyte as they increased.

  • PDF