DOI QR코드

DOI QR Code

Facilitated Transport of Cr(VI) through a Supported Liquid Membrane with a Carrier

  • Park, Sang-Wook (Department of Chemical Engineering, Pusan National University) ;
  • Lee, Jae-Wook (Department of Chemical Engineering, Sogang University) ;
  • Kim, Sung-Soo (School of Industrial Hygiene and Environmental System Engineering, Catholic University of Pusan) ;
  • Choi, Byoung-Sik (Department of Chemical Engineering, Pusan National University)
  • Published : 2003.06.30

Abstract

This paper has applied a simple model to the mass transfer mechanism of Cr(VI) with crownether in a batch-type, supported liquid membrane module. Concentration at pH 3 are as follows : 0.012 kmol/$m^3{\le}$18-crown-6${\le}$0.036 kmol/$m^3$ and 20 g/$m^3{\le}$ Cr(VI)${\le}$500 g/$m^3$. The measured values of forward- and backward-reaction rate constants between Cr(VI) and 18-crown-6 were used to simulate the model with the mass conservation equation and associated boundary conditions. Comparison between the experimental and simulated facilitated factor of Cr(VI) transport led to classification of reaction regions.

Keywords

References

  1. R. D. Noble, J. D, Way, and A. L. Bunge, Ion Exch Solvent Extr., 10, 63 (1988)
  2. F. W. E. Strelow, Ion Exch Solvent Extr., 5, 166 (1973)
  3. E. Salazar, M. I. Ortiz, A. M. Urtiaga, and J. A. Irahien, Ind Eng. Chem. Res., 31,1523 (1992) https://doi.org/10.1021/ie00006a015
  4. M. Terarnoto, N. Tohno, N. Ohnishi, and H. Matsuyama, Sep. Sci. Technol., 24, 981 (1989) https://doi.org/10.1080/01496398908049884
  5. A. I. Alonso, A.I. Galan, A. Irabien, and M. I. Ortiz, Chem. Eng. Sci., 49, 901 (1994) https://doi.org/10.1016/0009-2509(94)80026-X
  6. A M. Hochhauser and E. L. Cussler, AIChE, Symposium Series, 71, 136 (1976)
  7. Y. H. Huang, C. Y. Chen, and J. F. Kuo, J. Chem. Eng. Janpan, 24, 149 (1991) https://doi.org/10.1252/jcej.24.149
  8. B. G. Fraser, M. D. Pritzker, and R. L. Legge, Sep. Sci. Technol., 29, 2097 (1994) https://doi.org/10.1080/01496399408002192
  9. A. I. Alonso, A. Irabien, and M. I. Ortiz, Chem. Eng. Sci., 31, 271 (1996)
  10. G. W. Stevens, C. Chang, and M. E. Mackay, ibid.,31, 1025 (1996)
  11. S. W. Park, G. W. Kim, S. S. Kim, and I. J. Sohn, Sep. Sci. Technol., 36(0), 2309 (2001) https://doi.org/10.1081/SS-100105920
  12. A. K. Sengupta, S. Subramonian, and D. Clifford, J. Environ Eng., 19, 137 (1988)
  13. M. Teramoto, Ind. Eng. Chem. Res. 33, 2161 (1994) https://doi.org/10.1021/ie00033a020
  14. J. Bassett, R. C. Denney, G. H. Jeffery, and J. Mendhan, 'Vogel's Textbook of Quantitative Inorganic Analysis', 4th ed., p. 738, Longman Group Limited, New York (1978)
  15. S. W. Park, C. F. Kaseger, J. B. Moon, and J. H. Kim, Korea J. Chem. Eng., 13, 596 (1996) https://doi.org/10.1007/BF02706026
  16. P. V. Danckwerts, 'Gas-Liquid Reaction', p.15, McGrow-Hill Book Co., New York (1970)
  17. M. Teramoto, Q. Huang, S. Takayama, and M. Nakabayashi, Membrane Symposium, Society of janpan Membrane, Kyoto, No.8, 57 (1996)
  18. S. W. Park, N. H. Heo, J. S. Kim, and D. S. Suh, Korea J. Chem. Eng., 14, 312 (1997) https://doi.org/10.1007/BF02707045
  19. L. K. Doraiswamy and M. M. Sharma, 'Heterogeneous Reactions', vol. 2, p.17, John Wiley & Sons, New York (1984)