• Title/Summary/Keyword: imaging mode

Search Result 333, Processing Time 0.026 seconds

A High-speed Atomic Force Microscope for Precision Measurement of Microstructured Surfaces

  • Cui, Yuguo;Arai, Yoshikazu;Asai, Takemi;Ju, BinFeng;Gao, Wei
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.27-32
    • /
    • 2008
  • This paper describes a contact atomic force microscope (AFM) that can be used for high-speed precision measurements of microstructured surfaces. The AFM is composed of an air-bearing X stage, an air-bearing spindle with the axis of rotation in the Z direction, and an AFM probe unit. The traversing distance and maximum speed of the X stage are 300 mm and 400 mm/s, respectively. The spindle has the ability to hold a sample in a vacuum chuck with a maximum diameter of 130 mm and has a maximum rotation speed of 300 rpm. The bandwidth of the AFM probe unit in an open loop control circuit is more than 40 kHz. To achieve precision measurements of microstructured surfaces with slopes, a scanning strategy combining constant height measurements with a slope compensation technique is proposed. In this scanning strategy, the Z direction PZT actuator of the AFM probe unit is employed to compensate for the slope of the sample surface while the microstructures are scanned by the AFM probe at a constant height. The precision of such a scanning strategy is demonstrated by obtaining profile measurements of a microstructure surface at a series of scanning speeds ranging from 0.1 to 20.0 mm/s.

Development of medium resolution cross-dispersed silicon grisms in the Near Infrared ; Direct Silicon wafer bonding technique

  • Jeong, Hyeon-Ju;Wang, Wei-Song;Gully-Santiago, Michael;Deen, Casey;Pak, Soo-Jong;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.125.2-125.2
    • /
    • 2011
  • We are developing medium resolution cross-dispersed silicon grisms in the near IR region ($1.45{\sim}5.2{\mu}m$). The grisms will be installed in MIMIR, a multifunction instrument at the Lowel Observatory, USA. The two devices are designed to cover H and K band and L and M band simultaneously. Our goal is to make grism with R=3000 at 1.2 arcsec slit. The Silicon has high refractive index (n=3.4 at $1.5{\mu}m$) which enhances the resolving power by up to 5 times when compared to conventional material such as BK-7 (n=1.5 at 1.5 ${\mu}m$). The bonded grisms will be installed in a filter wheel for the uses switch from spectroscopic mode to imaging mode easily. Our device is compact and light weighted while it provides a decent resolving power. We produce monolithic grisms using e-beam lithography at the NASA JPL and chemically etching the grooves on the silicon prisms. Moreover, the main-disperser and cross-disperser will be contacted together by direct Si-Si bonding technique and eventually turn into one piece. The bonded pair offers more stability in terms of the layout of the spectrum and removes the Fresnel loss at the intersection of two grisms. We report on the proper wafer bonding steps through this research, and inspected the bonding quality thermally, optically and mechanically.

  • PDF

Digital Tomosynthesis Imaging of the Chest : Comparison of Patient Exposure Dose and Image Quality between Default Setting and Use Additional Filter (흉부 디지털토모영상의 기본모드 및 부가여과사용 시 환자선량과 화질비교)

  • Kim, Kye-Sun;Ahn, Sung-Min;Kim, Sung-Chul
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.9
    • /
    • pp.288-294
    • /
    • 2013
  • Chest digital tomosynthesis was the most advanced digital radiography technology, but it was higher patient dose than conventional chest radiography. Thus we tried to reduce a patient dose of chest digital tomosynthesis and evaluated its image quality. Result shows that radiation dose such as ESD, DAP and ED were 1.95 mGy, 17.66 $dGycm^2$ and 0.133 mSv respectively in default setting and 0.312 mGy, 2.27 $dGy.cm^2$ and 0.052 mSv in use additional filter, respectively. Doses were decrease 66.2%, 73.6% and 57.4% in ESD, DAP and ED, respectively. At the image quality assessment, overall sensitivities of use additional filter for nodule detection were not inferior to default mode for peripheral, central and peripheral micro nodules. However, sensitivity of low dose mode was significantly inferior to the default for central micro-nodules(p < .001).

Evaluation of Adult Lung CT Image for Ultra-Low-Dose CT Using Deep Learning Based Reconstruction

  • JO, Jun-Ho;MIN, Hyo-June;JEON, Kwang-Ho;KIM, Yu-Jin;LEE, Sang-Hyeok;KIM, Mi-Sung;JEON, Pil-Hyun;KIM, Daehong;BAEK, Cheol-Ha;LEE, Hakjae
    • Korean Journal of Artificial Intelligence
    • /
    • v.9 no.2
    • /
    • pp.1-5
    • /
    • 2021
  • Although CT has an advantage in describing the three-dimensional anatomical structure of the human body, it also has a disadvantage in that high doses are exposed to the patient. Recently, a deep learning-based image reconstruction method has been used to reduce patient dose. The purpose of this study is to analyze the dose reduction and image quality improvement of deep learning-based reconstruction (DLR) on the adult's chest CT examination. Adult lung phantom was used for image acquisition and analysis. Lung phantom was scanned at ultra-low-dose (ULD), low-dose (LD), and standard dose (SD) modes, and images were reconstructed using FBP (Filtered back projection), IR (Iterative reconstruction), DLR (Deep learning reconstruction) algorithms. Image quality variations with respect to varying imaging doses were evaluated using noise and SNR. At ULD mode, the noise of the DLR image was reduced by 62.42% compared to the FBP image, and at SD mode, the SNR of the DLR image was increased by 159.60% compared to the SNR of the FBP image. Based on this study, it is anticipated that the DLR will not only substantially reduce the chest CT dose but also drastic improvement of the image quality.

Ultrasound and clinical findings in the metacarpophalangeal joint assessment of show jumping horses in training

  • Yamada, Ana Lucia M.;Pinheiro, Marcelo;Marsiglia, Marilia F.;Hagen, Stefano Carlo F.;Baccarin, Raquel Yvonne A.;da Silva, Luis Claudio L.C.
    • Journal of Veterinary Science
    • /
    • v.21 no.3
    • /
    • pp.21.1-21.14
    • /
    • 2020
  • Background: Physical exercise is known to cause significant joint changes. Thus, monitoring joint behavior of athletic horses is essential in early disorders recognition, allowing the proper management. Objectives: The aims of this study were to determine the morphological patterns, physical examination characteristics and ultrasound findings of show jumping horses in training and to establish a score-based examination model for physical and ultrasound follow-ups of metacarpophalangeal joint changes in these animals. Methods: A total of 52 metacarpophalangeal joints from 26 horses who were initially in the taming stage were evaluated, and the horses' athletic progression was monitored. The horses were evaluated by a physical examination and by B-mode and Doppler-mode ultrasound examinations, starting at time zero (T0), which occurred concomitantly with the beginning of training, and every 3 months thereafter for a follow-up period of 18 months. Results: The standardized examination model revealed an increase in the maximum joint flexion angles and higher scores on the physical and ultrasound examinations after scoring was performed by predefined assessment tools, especially between 3 and 6 months of evaluation, which was immediately after the horses started more intense training. The lameness score and the ultrasound examination score were slightly higher at the end of the study. Conclusions: The observed results were probably caused by the implementation of a training regimen and joint adaptation to physical conditioning. The joints most likely undergo a pre-osteoarthritic period due to work overload, which can manifest in a consistent or adaptive manner, as observed during this study. Thus, continuous monitoring of young athlete horses by physical and ultrasound examinations that can be scored is essential.

Searching for Ways to Utilize Avatars in Consideration of User Preferences in the Experience Metaverse Service (경험 메타버스 서비스에 있어 사용자의 선호도를 고려한 아바타 활용 방안 모색)

  • Sung-Suk Park;Il-Hyun Cho
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.2
    • /
    • pp.45-57
    • /
    • 2023
  • Efforts to build metaverse platform services and expand profit structure are developing in a more realistic direction. The metaverse, which has been centered on 'creation and economy' and 'discovery', will evolve into an 'experience' metaverse, creating tangible business effects where satisfaction with the user experience leads directly to purchase. In this paper, the condition of the avatar used as a medium of economic activity between the metaverse platformer and the user and the business utilization plan were sought. In addition, a new 'metaverse business model' was proposed based on 'experience, discovery, creation and economy', and in particular, it was intended to lay the foundation for the experience metaverse to further develop in the form of 'business experience'. In addition, a survey was conducted on the 'application of metaverse service and avatar' targeting the MZ generation, the main customer base of the current metaverse service. In order to provide a service that satisfies the user, it was concluded that the appearance of the avatar needs to be changed according to the purpose and function. Accordingly, we propose an 'selective switch mode' that can change the avatar's appearance at the desired timing according to the 'experience' and 'purchase purpose' of each metaverse service area. In addition, by strategically utilizing the 'Digilog' psychology, we believe that it will be possible to promote the influx of new users while increasing the loyalty of existing users to the platform. Through the establishment of 'avatar purchase system' by 'selective switch mode' and 'avatar decorating system' by 'digilog' strategy, the experience metaverse, which has been focused on 'digital twin experience' so far, is As it develops into 'business experience', it is expected that the user experience can be further satisfied.

Standard Performance Measurements of GE $Advance^{TM}$ Positron Emission Tomography (GE $Advance^{TM}$ 양전자방출단층촬영기의 표준 성능평가)

  • Jeong, Ha-Kyu;Kim, Hee-Joung;Son, Hye-Kyung;Bong, Jung-Kyun;Jung, Hai-Jo;Jeon, Tae-Joo;Kim, Jae-Sam;Lee, Jong-Doo;Yoo, Hyung-Sik
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.2
    • /
    • pp.100-112
    • /
    • 2001
  • Purpose: The purpose of this study was to establish optimal imaging acquisition conditions for the GE $Advance^{TM}$ PET imaging system by performing the acceptance tests designed by National Electrical Manufacturers Association (NEMA) protocol and General Electric Medical Systems (GEMS) test procedures. Materials and Methods: Performance tests were carried out with $^{18}FDG$ radioactivity source and phantoms by using a standard acquisition mode. Transaxial resolution and scatter traction tests were performed with a line source and axial resolution with a point source, respectively. A cylindrical phantom made of polymethylmethacrylate (PMMA) was used to measure sensitivity, count rate losses and randoms, uniformity correction, and attenuation inserts were added to measure remaining tests. The test results were acquired in a diagnostic acquisition mode and analyzed mainly on high sensitivity mode. Results: Transaxial resolution and axial resolution were measured as average of 4.65 mm and 3.98 mm at 0 cm, and 6.02 mm and 6.71 mm at 20 cm on high sensitivity mode, respectively. Average scatter fraction was 9.87%, and sensitivity was $225.8kcps/{\mu}Ci/cc$ of trues. Activity at 50% deadtime was $4.6{\mu}Ci/cc$, and the error of count rate correction at that activity was from 1.49% to 3.83%. Average nonuniformity for total slice w3s 8.37%. The accuracy of scatter correction was -0.95%. The accuracies of attenuation correction were 5.68% for air, 0.04% for water and -6.51% for polytetrafluoroethylene (PTFE). Conclusion: The results satisfied most acceptance criteria, indicating that the GE $Advance^{TM}$ PET system can be optimally used for clinical applications.

  • PDF

Noninvasive Evaluation of Coronary Artery Bypass Graft Patency by Electron Beam Tomography (전자선 단층 촬영을 이용한 관상동맥 우회로 개존의 비침습적 평가)

  • 최규옥;김호석;조범구
    • Journal of Chest Surgery
    • /
    • v.32 no.8
    • /
    • pp.693-701
    • /
    • 1999
  • Recently non-invasive diagnostic imaging replaced the invasive catheter angiography in the diagnosis of vascular disease. Catheter methods are now almost confined to the purpose of intervention. Coronary artery or coronary artery bypass graft still needs catheter technique because of small diameter and the cardiac motion. The last challenge for radiologists in this domain is to obtain a non-invasive imaging. Electron beam tomography(EBT) for high temporal resolution is able to obtain a coronary arteriogram or coronary artery bypass graft (CABG), of which CABG imaging is quite useful for the evaluation of patency. In our experience as well as others, the accuracy of EBT angiogram in evaluating CABG patency revealed that the accuracy of patency of saphenous vein grafts(SVG) is high due to relatively wide lumen, short and straight course and less influence from cardiac motion. The sensitivity and specificity of patency of SVGs were 92%, 97% respectively in the prospective evaluat on and 100% each in the retrospective evaluation. A false positive and a false negative case are rudimentary errors in the initial learing period. In contrast the analysis of left internal mammary artery(LIMA) graft was difficult due to the inherent small size and the adjacent surgical clips provoking beam-hardening artifact; therefore, the method of combining 3 dimensional reconstruction and flow mode study was important in improving the accuracy of LIMA patency. The sensitivity and specificity of LIMA patency were 100% and 80% in both prospective and retrospective evaluation. Therefore, EBT angiography is an accurate non-invasive diagnostic modality for evaluating the patency of CABG, particularly in SVGs. The accuracy can be improved with the improvement of the EBT and the development of the image reconstruction software.

  • PDF

Study to Protocol of PET Acquisition Time for Patient Body Type in PET/CT (PET/CT 검사에서 환자체형에 따른 적정검사 프로토콜에 관한 고찰)

  • Cho, Seok Won;Ham, Joon-Chul;Kang, Chun Goo;Bahn, Young Kag;Lee, Seung Jae;Lim, Han Sang;Lee, Chang-Ho;Park, Hoon-Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.2
    • /
    • pp.72-77
    • /
    • 2013
  • Purpose: Whole-body PET using radiopharmaceutical is one of the imaging study methods for physiological changes of body. High specificity of the PET-CT examination is used to detect an early stages of cancer and metastatic cancer by imaging a physiological changes. During the imaging process, PET image has been characterized by a relatively low image quality due to its low sensitivity and the acquisition of random and scatter coincidences as well as patients figure. Therefore, the image quality as the changes of the acquisition times of patient weight was evaluated in this study. Materials and Methods: Thirty patients who presented to our hospital were enrolled. They were divided to normal, overweight, and obese group using BMI index, respectively. The patients with a liver disease and diabetes were excluded. $^{18}F-FDG$ was administered to the patients as 5.2 MBq per kg. After an hour from an injection, image acquisition was obtained as List mode in a part of liver in 1 bed. SNR (signal-to-noise ratio) of each groups acquisition times were confirmed from the calculated radiation counts and random fractions. The statistical significance of three groups was confirmed through one-way ANOVA test. On the basis of the counts of 2 minutes on normal group, the SNR of overweight group and obese group were compared. Results: The SNR were increased with loger aquisition time in 3 groups. In the condition of same acquisition time, the SNR had a statistical significance (P<0.05). The SNR were decreased to the normal, overweight, and obese, respectively. Liver activity had no significance difference on each group and RF had the significance differences (P<0.05). On the basis of the counts of 2 minutes on normal group, there were no statistical significance in a three minute acquisitions of overweight group and two minute acquisitions of obese group (P=0.150). Conclusion: In this study, the administrated amount of radiation dose did not adjust as the change of the patients weight. Increasing the acquisition time when the administration of the same amount of dose was able to get a good result of SNR. When the Based 2 minute on normal group, if overweight and obese case the increased acquisition time of 3 minute was able to obtain a similar SNR. On the basis of the normal group, the acquisition times of overweight and obese group were increased to 3 minutes per bed and the SNR were similar to the normal group.

  • PDF

Extragalactic Sciences from SPICA/FPC-S

  • Jeong, Woong-Seob;Matsumoto, Toshio;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Tsumura, Kohji;Tanaka, Masayuki;Shimonishi, Takashi;Lee, Dae-Hee;Pyo, Jeonghyun;Park, Sung-Joon;Moon, Bongkon;Park, Kwijong;Park, Youngsik;Han, Wonyong;Nam, Ukwon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.36.2-36.2
    • /
    • 2013
  • The SPICA (SPace Infrared Telescope for Cosmology & Astrophysics) project is a next-generation infrared space telescope optimized for mid- and far-infrared observation with a cryogenically cooled 3m-class telescope. The focal plane instruments onboard SPICA will enable us to resolve many astronomical key issues from the formation and evolution of galaxies to the planetary formation. The FPC-S (Focal Plane Camera - Sciecne) is a near-infrared instrument proposed by Korea as an international collaboration. Owing to the capability of both low-resolution imaging spectroscopy and wide-band imaging with a field of view of $5^{\prime}{\times}5^{\prime}$, it has large throughput as well as high sensitivity for diffuse light compared with JWST. In order to strengthen advantages of the FPC-S, we propose the studies of probing population III stars by the measurement of cosmic near-infrared background radiation and the star formation history at high redshift by the discoveries of active star-forming galaxies. In addition to the major scientific targets, to survey large area opens a new parameter space to investigate the deep Universe. The good survey capability in the parallel imaging mode allows us to study the rare, bright objects such as quasars, bright star-forming galaxies in the early Universe as a way to understand the formation of the first objects in the Universe, and ultra-cool brown dwarfs. Observations in the warm mission will give us a unique chance to detect high-z supernovae, ices in young stellar objects (YSOs) even with low mass, the $3.3{\mu}$ feature of shocked circumstance in supernova remnants. Here, we report the current status of SPICA/FPC project and its extragalactic sciences.

  • PDF