• Title/Summary/Keyword: image vector

Search Result 1,580, Processing Time 0.035 seconds

Implementation of Real Time Optical Associative Memory using LCTV (LCTV를 이용한 실시간 광 연상 메모리의 구현)

  • 정승우
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1990.02a
    • /
    • pp.102-111
    • /
    • 1990
  • In this thesis, an optical bidirectional inner-product associative memory model using liquid crystal television is proposed and analyzed theoretically and realized experimentally. The LCTV is used as a SLM(spatial light modulator), which is more practical than conventional SLMs, to produce image vector in terms of computer and CCD camera. Memory and input vectors are recorded into each LCTV through the video input connectors of it by using the image board. Two multi-focus hololenses are constructed in order to perform optical inner-product process. In forward process, the analog values of inner-products are measured by photodetectors and are converted to digital values which are enable to control the weighting values of the stored vectors by changing the gray levels of the pixels of the LCTV. In backward process, changed stored vectors are used to produce output image vector which is used again for input vector after thresholding. After some iterations, one of the stored vectors is retrieved which is most similar to input vector in other words, has the nearest hamming distance. The experimental results show that the proposed inner-product associative memory model can be realized optically and coincide well with the computer simulation.

  • PDF

A Predicted Direction Search Algorithm for Block Matching Motion Estimation (움직임 추정을 위한 예측 방향성 탐색 알고리즘)

  • 서재수;남재열;곽진석;이명호
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.11b
    • /
    • pp.109-114
    • /
    • 1999
  • Due to the temporal correlation of the image sequence, the motion vector of a block is highly related to the motion vector of the same coordinate block in the previous image frame. If we can obtain useful and enough information from the motion vector of the same coordinate block of the previous image frames, the total number of search points used to find the motion vector of the current block may be reduced significantly. Using that idea, an efficient new predicted direction search algorithm (PDSA) for block matching motion estimation is proposed in this paper.

  • PDF

An Approach for the Cross Modality Content-Based Image Retrieval between Different Image Modalities

  • Jeong, Inseong;Kim, Gihong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.585-592
    • /
    • 2013
  • CBIR is an effective tool to search and extract image contents in a large remote sensing image database queried by an operator or end user. However, as imaging principles are different by sensors, their visual representation thus varies among image modality type. Considering images of various modalities archived in the database, image modality difference has to be tackled for the successful CBIR implementation. However, this topic has been seldom dealt with and thus still poses a practical challenge. This study suggests a cross modality CBIR (termed as the CM-CBIR) method that transforms given query feature vector by a supervised procedure in order to link between modalities. This procedure leverages the skill of analyst in training steps after which the transformed query vector is created for the use of searching in target images with different modalities. Current initial results show the potential of the proposed CM-CBIR method by delivering the image content of interest from different modality images. Despite its retrieval capability is outperformed by that of same modality CBIR (abbreviated as the SM-CBIR), the lack of retrieval performance can be compensated by employing the user's relevancy feedback, a conventional technique for retrieval enhancement.

Image Data Compression Using Laplacian Pyramid Processing and Vector Quantization (라플라시안 피라미드 프로세싱과 백터 양자화 방법을 이용한 영상 데이타 압축)

  • Park, G.H.;Cha, I.H.;Youn, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1347-1351
    • /
    • 1987
  • This thesis aims at studying laplacian pyramid vector quantization which keeps a simple compression algorithm and stability against various kinds of image data. To this end, images are devied into two groups according to their statistical characteristics. At 0.860 bits/pixel and 0.360 bits/pixel respectively, laplacian pyramid vector quantization is compared to the existing spatial domain vector quantization and transform coding under the same condition in both objective and subjective value. The laplacian pyramid vector quantization is much more stable against the statistical characteristics of images than the existing vector quantization and transform coding.

  • PDF

Support Vector Machine Classification of Hyperspectral Image using Spectral Similarity Kernel (분광 유사도 커널을 이용한 하이퍼스펙트럴 영상의 Support Vector Machine(SVM) 분류)

  • Choi, Jae-Wan;Byun, Young-Gi;Kim, Yong-Il;Yu, Ki-Yun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.4 s.38
    • /
    • pp.71-77
    • /
    • 2006
  • Support Vector Machine (SVM) which has roots in a statistical learning theory is a training algorithm based on structural risk minimization. Generally, SVM algorithm uses the kernel for determining a linearly non-separable boundary and classifying the data. But, classical kernels can not apply to effectively the hyperspectral image classification because it measures similarity using vector's dot-product or euclidian distance. So, This paper proposes the spectral similarity kernel to solve this problem. The spectral similariy kernel that calculate both vector's euclidian and angle distance is a local kernel, it can effectively consider a reflectance property of hyperspectral image. For validating our algorithm, SVM which used polynomial kernel, RBF kernel and proposed kernel was applied to land cover classification in Hyperion image. It appears that SVM classifier using spectral similarity kernel has the most outstanding result in qualitative and spatial estimation.

  • PDF

Image Path Searching using Auto and Cross Correlations

  • Kim, Young-Bin;Ryu, Kwang-Ryol
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.747-752
    • /
    • 2011
  • The position detection of overlapping area in the interframe for image stitching using auto and cross correlation function (ACCF) and compounding one image with the stitching algorithm is presented in this paper. ACCF is used by autocorrelation to the featured area to extract the filter mask in the reference (previous) image and the comparing (current) image is used by crosscorrelation. The stitching is detected by the position of high correlation, and aligns and stitches the image in shifting the current image based on the moving vector. The ACCF technique results in a few computations and simplicity because the filter mask is given by the featuring block, and the position is enabled to detect a bit movement. Input image captured from CMOS is used to be compared with the performance between the ACCF and the window correlation. The results of ACCF show that there is no seam and distortion at the joint parts in the stitched image, and the detection performance of the moving vector is improved to 12% in comparison with the window correlation method.

Content-Based Image Retrieval System using Feature Extraction of Image Objects (영상 객체의 특징 추출을 이용한 내용 기반 영상 검색 시스템)

  • Jung Seh-Hwan;Seo Kwang-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.3
    • /
    • pp.59-65
    • /
    • 2004
  • This paper explores an image segmentation and representation method using Vector Quantization(VQ) on color and texture for content-based image retrieval system. The basic idea is a transformation from the raw pixel data to a small set of image regions which are coherent in color and texture space. These schemes are used for object-based image retrieval. Features for image retrieval are three color features from HSV color model and five texture features from Gray-level co-occurrence matrices. Once the feature extraction scheme is performed in the image, 8-dimensional feature vectors represent each pixel in the image. VQ algorithm is used to cluster each pixel data into groups. A representative feature table based on the dominant groups is obtained and used to retrieve similar images according to object within the image. The proposed method can retrieve similar images even in the case that the objects are translated, scaled, and rotated.

Development of Basic Application Software for KOMPSAT High Resolution Images

  • Park S. Y.;Lee K. J.;Kim Y. S.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.509-511
    • /
    • 2004
  • This paper outlines the development of image processing system, which will allow the general users in Government and Public organizations easily to use and apply KOMPSAT EOC images in their own business. The system includes an import/export module of EOC image distributed in Hierarchical Data Format (HDF) file and various image processing analysis modules. Especially, the image mosaic and subset functions are designed to use EOC image as an image map, generating the Ortho-image module. To update the various spatial data with EOC image, some essential modules such as change detection by pattern recognition, overlay between images and vector data, and modification of vector data are implemented in the system. The system is developed based on the user request analysis of government agency, and suited for more efficient use of satellite image in public applications. Such system is expected to contribute to practical application of KOMPSAT-2 that will be launched in 2005. Further efforts will be made to accommodate the KOMPSAT -2 MSC data.

  • PDF

A DCT-based hierarcical finite state vector quantization for image coding (영상 부호화를 위한 이산 여현변환 기반의 계층적 유한 상태 벡터 양자화 기법)

  • 남일우;김응성;이근영
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.1
    • /
    • pp.88-95
    • /
    • 1998
  • In this paper, we introduce a new DCT based hierarchical finite state vector quantization. Our proposed scheme uses difference of DCT coefficients to find a representative vector, and classifies image blocks into different hierarchical levels depending on their structural characteristics, and uses different coding rates and different number os state codebooks at each hierarchical levels. As a result, we obtained reconstructed images having satisfiable quality objectively.

  • PDF

Correction of Position Error Using Modified Hough Transformation For Inspection System with Low Precision X- Y Robot (저정밀 X-Y 로봇을 이용한 검사 시스템의 변형된 Hough 변환을 이용한 위치오차보정)

  • 최경진;이용현;박종국
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.10
    • /
    • pp.774-781
    • /
    • 2003
  • The important factors that cause position error in X-Y robot are inertial force, frictions and spring distortion in screw or coupling. We have to estimate these factors precisely to correct position errors, Which is very difficult. In this paper, we makes systems to inspect metal stencil which is used to print solder paste on pads of SMD of PCB with low precision X-Y robot and vision system. To correct position error that is caused by low precision X-Y robot, we defines position error vector that is formed with position of objects that exist in reference and camera image. We apply MHT(Modified Hough Transformation) for the aim of determining the dominant position error vector. We modify reference image using extracted dominant position error vector and obtain reference image that is the same with camera image. Effectiveness and performance of this method are verified by simulation and experiment.