Journal of Korean Society for Geospatial Information Science (대한공간정보학회지)
- Volume 14 Issue 4 Serial No. 38
- /
- Pages.71-77
- /
- 2006
- /
- 1598-2955(pISSN)
- /
- 2287-6693(eISSN)
Support Vector Machine Classification of Hyperspectral Image using Spectral Similarity Kernel
분광 유사도 커널을 이용한 하이퍼스펙트럴 영상의 Support Vector Machine(SVM) 분류
Abstract
Support Vector Machine (SVM) which has roots in a statistical learning theory is a training algorithm based on structural risk minimization. Generally, SVM algorithm uses the kernel for determining a linearly non-separable boundary and classifying the data. But, classical kernels can not apply to effectively the hyperspectral image classification because it measures similarity using vector's dot-product or euclidian distance. So, This paper proposes the spectral similarity kernel to solve this problem. The spectral similariy kernel that calculate both vector's euclidian and angle distance is a local kernel, it can effectively consider a reflectance property of hyperspectral image. For validating our algorithm, SVM which used polynomial kernel, RBF kernel and proposed kernel was applied to land cover classification in Hyperion image. It appears that SVM classifier using spectral similarity kernel has the most outstanding result in qualitative and spatial estimation.
통계학습이론에 기반하고 있는 Support Vector Machine(SVM)은 구조적 위험 최소화원리를 바탕으로 하는 학습 알고리즘이다. 일반적으로SVM은 비선형 경계를 결정하고 자료를 분류하기 위해서 커널(kernel)을 사용한다. 그러나 기존의 커널들은 두 벡터간의 내적이나 거리차를 이용하여 유사도를 측정하기 때문에 하이퍼스펙트럴 영상분류에 효과적으로 적용될 수 없다. 본 논문에서는 이를 해결하기 위해서 분광유사도커널(Spectral similarity kernel)을 제안한다. 분광유사도 커널은 두 벡터의 거리차와 각 차이를 모두 계산하는 지역적 커널로 하이퍼스펙트럴 영상의 분광특성을 효과적으로 고려할 수 있다. 이를 검증하기 위해서 Hyperion 영상에 polynomial kernel, RBF kernel을 사용한 SVM 분류기와 분광유사도 커널을 사용한 SVM 분류기를 적용하여 토지피복분류를 시행하였다. 분류결과를 통해서 분광유사도 커널을 사용한 SVM 분류기가 정량적, 공간적으로 가장 우수한 결과를 보임을 확인하였다.
Keywords