• Title/Summary/Keyword: image vector

Search Result 1,580, Processing Time 0.034 seconds

Multidimensional uniform cubic lattice vector quantization for wavelet transform coding (웨이브렛변환 영상 부호화를 위한 다차원 큐빅 격자 구조 벡터 양자화)

  • 황재식;이용진;박현욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.7
    • /
    • pp.1515-1522
    • /
    • 1997
  • Several image coding algorithms have been developed for the telecommunication and multimedia systems with high image quality and high compression ratio. In order to achieve low entropy and distortion, the system should pay great cost of computation time and memory. In this paper, the uniform cubic lattice is chosen for Lattice Vector Quantization (LVQ) because of its generic simplicity. As a transform coding, the Discrete Wavelet Transform (DWT) is applied to the images because of its multiresolution property. The proposed algorithm is basically composed of the biorthogonal DWT and the uniform cubic LVQ. The multiresolution property of the DWT is actively used to optimize the entropy and the distortion on the basis of the distortion-rate function. The vector codebooks are also designed to be optimal at each subimage which is analyzed by the biorthogonal DWT. For compression efficiency, the vector codebook has different dimension depending on the variance of subimage. The simulation results show that the performance of the proposed coding mdthod is superior to the others in terms of the computation complexity and the PSNR in the range of entropy below 0.25 bpp.

  • PDF

A Study on Intra/Interframe Vector Quantized Block Truncation Coding for Image Data Compression (화상데이터 압축을 위한 프레임내/프레임간 벡터양자화된 블록절단부호화에 관한 연구)

  • Ko, Hyung Hwa;Lee, Choong Woong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.5
    • /
    • pp.732-736
    • /
    • 1986
  • This paper propose a novel vector-quantized block truncation coder for image data compression. A data compression ratio of about 3-6 times larger than that of the BTC can be achieved by utilizign a vector quantizer with the BTC. A vector quantizer was realized by computer simulation. The compressed data rate of 0.7~1.0 bit/pel with intraframe coder and that of 0.3~0.5 bit/pel with interframe coder gives a good performance.

  • PDF

Motion Field Estimation Using U-Disparity Map in Vehicle Environment

  • Seo, Seung-Woo;Lee, Gyu-Cheol;Yoo, Ji-Sang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.428-435
    • /
    • 2017
  • In this paper, we propose a novel motion field estimation algorithm for which a U-disparity map and forward-and-backward error removal are applied in a vehicular environment. Generally, a motion exists in an image obtained by a camera attached to a vehicle by vehicle movement; however, the obtained motion vector is inaccurate because of the surrounding environmental factors such as the illumination changes and vehicles shaking. It is, therefore, difficult to extract an accurate motion vector, especially on the road surface, due to the similarity of the adjacent-pixel values; therefore, the proposed algorithm first removes the road surface region in the obtained image by using a U-disparity map, and uses then the optical flow that represents the motion vector of the object in the remaining part of the image. The algorithm also uses a forward-backward error-removal technique to improve the motion-vector accuracy and a vehicle's movement is predicted through the application of the RANSAC (RANdom SAmple Consensus) to the previously obtained motion vectors, resulting in the generation of a motion field. Through experiment results, we show that the performance of the proposed algorithm is superior to that of an existing algorithm.

Fall Detection System Using Motion Vector (움직임 벡터를 이용한 낙상 감지 시스템)

  • Kim, Sang-Soo;Kim, Sun-Woo;Choi, Yeon-Sung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.1
    • /
    • pp.38-44
    • /
    • 2016
  • In this paper, Author of this article presents a system to ensure the safety of residents in case the residents occurs an fall situation. Author of this article use weighted difference image and motion vector. Proposed system suggested the fall detection algorithm using weighted difference image and motion vector. Fall detection algorithm showed a success rate of 85% ~ 97.1% through 150 experiments. Proposed algorithm showed a litter higher or similar success rate than the existing camera based system.

A Realtime Road Weather Recognition Method Using Support Vector Machine (Support Vector Machine을 이용한 실시간 도로기상 검지 방법)

  • Seo, Min-ho;Youk, Dong-bin;Park, Sae-rom;Jun, Jin-ho;Park, Jung-hoon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.1025-1032
    • /
    • 2020
  • In this paper, we propose a method to classify road weather conditions into rain, fog, and sun using a SVM (Support Vector Machine) classifier after extracting weather features from images acquired in real time using an optical sensor installed on a roadside post. A multi-dimensional weather feature vector consisting of factors such as image sharpeness, image entropy, Michelson contrast, MSCN (Mean Subtraction and Contrast Normalization), dark channel prior, image colorfulness, and local binary pattern as global features of weather-related images was extracted from road images, and then a road weather classifier was created by performing machine learning on 700 sun images, 2,000 rain images, and 1,000 fog images. Finally, the classification performance was tested for 140 sun images, 510 rain images, and 240 fog images. Overall classification performance is assessed to be applicable in real road services and can be enhanced further with optimization along with year-round data collection and training.

A Multi-Stage Approach to Secure Digital Image Search over Public Cloud using Speeded-Up Robust Features (SURF) Algorithm

  • AL-Omari, Ahmad H.;Otair, Mohammed A.;Alzwahreh, Bayan N.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.65-74
    • /
    • 2021
  • Digital image processing and retrieving have increasingly become very popular on the Internet and getting more attention from various multimedia fields. That results in additional privacy requirements placed on efficient image matching techniques in various applications. Hence, several searching methods have been developed when confidential images are used in image matching between pairs of security agencies, most of these search methods either limited by its cost or precision. This study proposes a secure and efficient method that preserves image privacy and confidentially between two communicating parties. To retrieve an image, feature vector is extracted from the given query image, and then the similarities with the stored database images features vector are calculated to retrieve the matched images based on an indexing scheme and matching strategy. We used a secure content-based image retrieval features detector algorithm called Speeded-Up Robust Features (SURF) algorithm over public cloud to extract the features and the Honey Encryption algorithm. The purpose of using the encrypted images database is to provide an accurate searching through encrypted documents without needing decryption. Progress in this area helps protect the privacy of sensitive data stored on the cloud. The experimental results (conducted on a well-known image-set) show that the performance of the proposed methodology achieved a noticeable enhancement level in terms of precision, recall, F-Measure, and execution time.

A Feature-Based Retrieval Technique for Image Database (특징기반 영상 데이터베이스 검색 기법)

  • Kim, Bong-Gi;Oh, Hae-Seok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.11
    • /
    • pp.2776-2785
    • /
    • 1998
  • An image retrieval system based on image content is a key issue for building and managing large multimedia database, such as art galleries and museums, trademarks and copyrights, and picture archiving and communication system. Therefore, the interest on the subject of content-based image retrieval has been greatly increased for the last few years. This paper proposes a feature-based image retrieval technique which uses a compound feature vector representing both of color and shape of an image. Color information for the feature vector is obtained using the algebraic moment of each pixel of an image based on the property of regional color distribution. Shape information for the feature vector is obtained using the Improved Moment Invariant(IMI) which reduces the quantity of computation and increases retrieval efficiency. In the preprocessing phase for extracting shape feature, we transform a color image into a gray image. Since we make use of the modified DCT algorithm, it is implemented easily and can extract contour in real time. As an experiment, we have compared our method with previous methods using a database consisting of 150 automobile images, and the results of the experiment have shown that our method has the better performance on retrieval effectiveness.

  • PDF

An Development of Image Retrieval Model based on Image2Vec using GAN (Generative Adversarial Network를 활용한 Image2Vec기반 이미지 검색 모델 개발)

  • Jo, Jaechoon;Lee, Chanhee;Lee, Dongyub;Lim, Heuiseok
    • Journal of Digital Convergence
    • /
    • v.16 no.12
    • /
    • pp.301-307
    • /
    • 2018
  • The most of the IR focus on the method for searching the document, so the keyword-based IR system is not able to reflect the feature information of the image. In order to overcome these limitations, we have developed a system that can search similar images based on the vector information of images, and it can search for similar images based on sketches. The proposed system uses the GAN to up sample the sketch to the image level, convert the image to the vector through the CNN, and then retrieve the similar image using the vector space model. The model was learned using fashion image and the image retrieval system was developed. As a result, the result is showed meaningful performance.

Multispectral Image Compression Using Classification in Wavelet Domain and Classified Inter-channel Prediction and Selective Vector Quantization in Wavelet Domain (웨이브릿 영역에서의 영역분류와 대역간 예측 및 선택적 벡터 양자화를 이용한 다분광 화상데이타의 압축)

  • 석정엽;반성원;김병주;박경남;김영춘;이건일
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.31-34
    • /
    • 2000
  • In this paper, we proposed multispectral image compression method using CIP (classified inter-channel prediction) and SVQ (selective vector quantization) in wavelet domain. First, multispectral image is wavelet transformed and classified into one of three classes considering reflection characteristics of the subband with the lowest resolution. Then, for a reference channel which has the highest correlation with other channels, the variable VQ is performed in the classified intra-channel to remove spatial redundancy. For other channels, the CIP is performed to remove spectral redundancy. Finally, the prediction error is reduced by performing SVQ. Experiments are carried out on a multispectral image. The results show that the proposed method reduce the bit rate at higher reconstructed image quality and improve the compression efficiency compared to conventional method.

  • PDF

Detection of View Reversal in a Stereo Video

  • Son, Ji Deok;Song, Byung Cheol
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.5
    • /
    • pp.317-321
    • /
    • 2013
  • This paper proposes a detection algorithm for view reversal in a stereoscopic video using a disparity map and motion vector field. We obtain the disparity map of a stereo image was obtained using a specific stereo matching algorithm and classify the image into the foreground and background. Next, the motion vector field of the image on a block basis was produced using a full search algorithm. Finally, the stereo image was considered to be reversed when the foreground moved toward the background and the covered region was in the foreground. The proposed algorithm achieved a good detection rate when the background was covered sufficiently by its moving foreground.

  • PDF