Fig. 1. Extraction of Feature in Image using Global Average Pooling Layer
Fig. 2. Image Feature Embedding using T-SNE
Fig. 3. The Structure of Vector-based Image Retrieval and Sketch-based Image Retrieval Model
Table 1. Amazon Categories Sample
Table 2. Result of Precision
Table 3. Result of Precision at 5
References
- Sheng Lu. (2017). Market Size of the Global Textile and Apparel Industry: 2015 to 2020. FASH455 Global Apparel & Textile Trade and Sourcing. https://shenglufashion.wordpress.com/2017/06/06/market-siz e-of-the-global-texti le-and-apparel-industry-2015-to-2020/
- K. T. Chen & J. Luo. (2017). When Fashion Meets Big Data: Discriminative Mining of Best Selling Clothing Features. in Proceedings of the 26th International Conference on World Wide Web Companion, International World Wide Web Conferences Steering Committee.
- S. Joo & J. Ha. (2016). Fashion Industry System and Fashion Leaders in the Digital Era, J. Korean Soc. Cloth. Text, 40(3), 506-515. https://doi.org/10.5850/JKSCT.2016.40.3.506
- C. Kang & H. Kim (2017). Industry Credit Outlook. Korea Ratings, Dec. 12.
- F. Perronnin & C. Dance. (2007, June). Fisher kernels on visual vocabularies for image categorization. In 2007 IEEE conference on computer vision and pattern recognition, 1-8.
- D. G. Lowe. (2004). Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60(2), 91-110. https://doi.org/10.1023/B:VISI.0000029664.99615.94
- A. Kannan, P. P. Talukdar, N. Rasiwasia & Q. Ke. (2011). Improving product classification using images. In Data Mining (ICDM), 2011 IEEE 11th International Conference on, 310-319.
- K. He, X. Zhang, S. Ren & J. Sun. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 770-778.
- D. Y. Lee, W. Yu. & H. Lim. (2017). Bi-directional LSTM-CNN-CRF for Korean Named Entity Recognition System with Feature Augmentation. Journal of the Korea Convergence Society, 8(12), 55-62. https://doi.org/10.15207/JKCS.2017.8.12.055
- J. Han, B. Koo & K. Cheoi. (2017). Obstacle Detection and Recognition System for Autonomous Driving Vehicle. Journal of Convergence for Information Technology, 7(6), 229-235. https://doi.org/10.22156/CS4SMB.2017.7.6.229
- J. Deng, W. Dong, R. Socher, L. J. Li, K. Li & L. Fei-Fei. (2009). Imagenet: A large-scale hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, 248-255.
- D. Lee, J. Jo & H. Lim. (2017). User Sentiment Analysis on Amazon Fashion Product Review Using Word Embedding. Journal of the Korea Convergence Society, 8(4), 1-8 https://doi.org/10.15207/JKCS.2017.8.4.001
- A. Krizhevsky, I. Sutskever & G. E. Hinton. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pp. 1097-1105.
- G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever & R. R. Salakhutdinov. (2012). Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580.
- M. Lin, Q. Chen & S. Yan. (2013). Network in network. arXiv preprint arXiv:1312.4400.
- P. D. Turney & P. Pantel. (2010). From frequency to meaning: Vector space models of semantics. Journal of artificial intelligence research, 37, 141-188. https://doi.org/10.1613/jair.2934
- Y. LeCun, Y. Bengio & G. Hinton. (2015). Deep learning. nature, 521(7553), 436. https://doi.org/10.1038/nature14539
- A. Sharif Razavian, H. Azizpour, J. Sullivan & S. Carlsson. (2014). CNN features off-the-shelf: an astounding baseline for recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 806-813.
- J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng & T. Darrell. (2013). A deep convolutional activation feature for generic visual recognition. arXiv preprint. arXiv preprint arXiv:1310.1531.
- A. Babenko, A. Slesarev, A. Chigorin & V. Lempitsky. (2014). Neural codes for image retrieval. In European conference on computer vision, 584-599.
- I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair & Y. Bengio. (2014). Generative adversarial nets. In Advances in neural information processing systems, 2672-2680.
- C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta & W. Shi. (2017). Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In CVPR, 2(3), 4.
- H. Zhang, T. Xu, H. Li, S. Zhang, X. Huang, X. Wang & D. Metaxas. (2017). Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks. arXiv preprint.
- J. Canny. (1986). A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence, 6, 679-698.
- S. Xie & Z. Tu. (2015). Holistically-nested edge detection. In Proceedings of the IEEE international conference on computer vision, 1395-1403.
- P. Isola, J. Y. Zhu, T. Zhou & A. A. Efros. (2017). Image-to-image translation with conditional adversarial networks. arXiv preprint.
- Y. Jing, D. Liu, D. Kislyuk, A. Zhai, J. Xu, J. Donahue, & S. Tavel. (2015). Visual search at pinterest. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1889-1898.