• Title/Summary/Keyword: image technology

Search Result 9,491, Processing Time 0.035 seconds

A Development of a Mixed-Reality (MR) Education and Training System based on user Environment for Job Training for Radiation Workers in the Nondestructive Industry (비파괴산업 분야 방사선작업종사자 직장교육을 위한 사용자 환경 기반 혼합현실(MR) 교육훈련 시스템 개발)

  • Park, Hyong-Hu;Shim, Jae-Goo;Park, Jeong-kyu;Son, Jeong-Bong;Kwon, Soon-Mu
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.1
    • /
    • pp.45-54
    • /
    • 2021
  • This study was written to create educational content in non-destructive fields based on Mixed Reality. Currently, in the field of radiation, there is almost no content for educational Mixed Reality-based educational content. And in the field of non-destructive inspection, the working environment is poor, the number of employees is often 10 or less for each manufacturer, and the educational infrastructure is not built. There is no practical training, only practical training and safety education to convey information. To solve this, it was decided to develop non-destructive worker education content based on Mixed Reality. This content was developed based on Microsoft's HoloLens 2 HMD device. It is manufactured based on the resolution of 1280 ⁎ 720, and the resolution is different for each device, and the Side is created by aligning the Left, Right, Bottom, and TOP positions of Anchor, and the large image affects the size of Atlas. The large volume like the wallpaper and the upper part was made by replacing it with UITexture. For UI Widget Wizard, I made Label, Buttom, ScrollView, and Sprite. In this study, it is possible to provide workers with realistic educational content, enable self-directed education, and educate with 3D stereoscopic images based on reality to provide interesting and immersive education. Through the images provided in Mixed Reality, the learner can directly operate things through the interaction between the real world and the Virtual Reality, and the learner's learning efficiency can be improved. In addition, mixed reality education can play a major role in non-face-to-face learning content in the corona era, where time and place are not disturbed.

Estimation of Rice Canopy Height Using Terrestrial Laser Scanner (레이저 스캐너를 이용한 벼 군락 초장 추정)

  • Dongwon Kwon;Wan-Gyu Sang;Sungyul Chang;Woo-jin Im;Hyeok-jin Bak;Ji-hyeon Lee;Jung-Il Cho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.387-397
    • /
    • 2023
  • Plant height is a growth parameter that provides visible insights into the plant's growth status and has a high correlation with yield, so it is widely used in crop breeding and cultivation research. Investigation of the growth characteristics of crops such as plant height has generally been conducted directly by humans using a ruler, but with the recent development of sensing and image analysis technology, research is being attempted to digitally convert growth measurement technology to efficiently investigate crop growth. In this study, the canopy height of rice grown at various nitrogen fertilization levels was measured using a laser scanner capable of precise measurement over a wide range, and a comparative analysis was performed with the actual plant height. As a result of comparing the point cloud data collected with a laser scanner and the actual plant height, it was confirmed that the estimated plant height measured based on the average height of the top 1% points showed the highest correlation with the actual plant height (R2 = 0.93, RMSE = 2.73). Based on this, a linear regression equation was derived and used to convert the canopy height measured with a laser scanner to the actual plant height. The rice growth curve drawn by combining the actual and estimated plant height collected by various nitrogen fertilization conditions and growth period shows that the laser scanner-based canopy height measurement technology can be effectively utilized for assessing the plant height and growth of rice. In the future, 3D images derived from laser scanners are expected to be applicable to crop biomass estimation, plant shape analysis, etc., and can be used as a technology for digital conversion of conventional crop growth assessment methods.

Utilization of Smart Farms in Open-field Agriculture Based on Digital Twin (디지털 트윈 기반 노지스마트팜 활용방안)

  • Kim, Sukgu
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2023.04a
    • /
    • pp.7-7
    • /
    • 2023
  • Currently, the main technologies of various fourth industries are big data, the Internet of Things, artificial intelligence, blockchain, mixed reality (MR), and drones. In particular, "digital twin," which has recently become a global technological trend, is a concept of a virtual model that is expressed equally in physical objects and computers. By creating and simulating a Digital twin of software-virtualized assets instead of real physical assets, accurate information about the characteristics of real farming (current state, agricultural productivity, agricultural work scenarios, etc.) can be obtained. This study aims to streamline agricultural work through automatic water management, remote growth forecasting, drone control, and pest forecasting through the operation of an integrated control system by constructing digital twin data on the main production area of the nojinot industry and designing and building a smart farm complex. In addition, it aims to distribute digital environmental control agriculture in Korea that can reduce labor and improve crop productivity by minimizing environmental load through the use of appropriate amounts of fertilizers and pesticides through big data analysis. These open-field agricultural technologies can reduce labor through digital farming and cultivation management, optimize water use and prevent soil pollution in preparation for climate change, and quantitative growth management of open-field crops by securing digital data for the national cultivation environment. It is also a way to directly implement carbon-neutral RED++ activities by improving agricultural productivity. The analysis and prediction of growth status through the acquisition of the acquired high-precision and high-definition image-based crop growth data are very effective in digital farming work management. The Southern Crop Department of the National Institute of Food Science conducted research and development on various types of open-field agricultural smart farms such as underground point and underground drainage. In particular, from this year, commercialization is underway in earnest through the establishment of smart farm facilities and technology distribution for agricultural technology complexes across the country. In this study, we would like to describe the case of establishing the agricultural field that combines digital twin technology and open-field agricultural smart farm technology and future utilization plans.

  • PDF

Analysis and Forecast of Venture Capital Investment on Generative AI Startups: Focusing on the U.S. and South Korea (생성 AI 스타트업에 대한 벤처투자 분석과 예측: 미국과 한국을 중심으로)

  • Lee, Seungah;Jung, Taehyun
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.4
    • /
    • pp.21-35
    • /
    • 2023
  • Expectations surrounding generative AI technology and its profound ramifications are sweeping across various industrial domains. Given the anticipated pivotal role of the startup ecosystem in the utilization and advancement of generative AI technology, it is imperative to cultivate a deeper comprehension of the present state and distinctive attributes characterizing venture capital (VC) investments within this domain. The current investigation delves into South Korea's landscape of VC investment deals and prognosticates the projected VC investments by juxtaposing these against the United States, the frontrunner in the generative AI industry and its associated ecosystem. For analytical purposes, a compilation of 286 investment deals originating from 117 U.S. generative AI startups spanning the period from 2008 to 2023, as well as 144 investment deals from 42 South Korean generative AI startups covering the years 2011 to 2023, was amassed to construct new datasets. The outcomes of this endeavor reveal an upward trajectory in the count of VC investment deals within both the U.S. and South Korea during recent years. Predominantly, these deals have been concentrated within the early-stage investment realm. Noteworthy disparities between the two nations have also come to light. Specifically, in the U.S., in contrast to South Korea, the quantum of recent VC deals has escalated, marking an augmentation ranging from 285% to 488% in the corresponding developmental stage. While the interval between disparate investment stages demonstrated a slight elongation in South Korea relative to the U.S., this discrepancy did not achieve statistical significance. Furthermore, the proportion of VC investments channeled into generative AI enterprises, relative to the aggregate number of deals, exhibited a higher quotient in South Korea compared to the U.S. Upon a comprehensive sectoral breakdown of generative AI, it was discerned that within the U.S., 59.2% of total deals were concentrated in the text and model sectors, whereas in South Korea, 61.9% of deals centered around the video, image, and chat sectors. Through forecasting, the anticipated VC investments in South Korea from 2023 to 2029 were derived via four distinct models, culminating in an estimated average requirement of 3.4 trillion Korean won (ranging from at least 2.408 trillion won to a maximum of 5.919 trillion won). This research bears pragmatic significance as it methodically dissects VC investments within the generative AI domain across both the U.S. and South Korea, culminating in the presentation of an estimated VC investment projection for the latter. Furthermore, its academic significance lies in laying the groundwork for prospective scholarly inquiries by dissecting the current landscape of generative AI VC investments, a sphere that has hitherto remained void of rigorous academic investigation supported by empirical data. Additionally, the study introduces two innovative methodologies for the prediction of VC investment sums. Upon broader integration, application, and refinement of these methodologies within diverse academic explorations, they stand poised to enhance the prognosticative capacity pertaining to VC investment costs.

  • PDF

A Study on the Digital Drawing of Archaeological Relics Using Open-Source Software (오픈소스 소프트웨어를 활용한 고고 유물의 디지털 실측 연구)

  • LEE Hosun;AHN Hyoungki
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.1
    • /
    • pp.82-108
    • /
    • 2024
  • With the transition of archaeological recording method's transition from analog to digital, the 3D scanning technology has been actively adopted within the field. Research on the digital archaeological digital data gathered from 3D scanning and photogrammetry is continuously being conducted. However, due to cost and manpower issues, most buried cultural heritage organizations are hesitating to adopt such digital technology. This paper aims to present a digital recording method of relics utilizing open-source software and photogrammetry technology, which is believed to be the most efficient method among 3D scanning methods. The digital recording process of relics consists of three stages: acquiring a 3D model, creating a joining map with the edited 3D model, and creating an digital drawing. In order to enhance the accessibility, this method only utilizes open-source software throughout the entire process. The results of this study confirms that in terms of quantitative evaluation, the deviation of numerical measurement between the actual artifact and the 3D model was minimal. In addition, the results of quantitative quality analysis from the open-source software and the commercial software showed high similarity. However, the data processing time was overwhelmingly fast for commercial software, which is believed to be a result of high computational speed from the improved algorithm. In qualitative evaluation, some differences in mesh and texture quality occurred. In the 3D model generated by opensource software, following problems occurred: noise on the mesh surface, harsh surface of the mesh, and difficulty in confirming the production marks of relics and the expression of patterns. However, some of the open source software did generate the quality comparable to that of commercial software in quantitative and qualitative evaluations. Open-source software for editing 3D models was able to not only post-process, match, and merge the 3D model, but also scale adjustment, join surface production, and render image necessary for the actual measurement of relics. The final completed drawing was tracked by the CAD program, which is also an open-source software. In archaeological research, photogrammetry is very applicable to various processes, including excavation, writing reports, and research on numerical data from 3D models. With the breakthrough development of computer vision, the types of open-source software have been diversified and the performance has significantly improved. With the high accessibility to such digital technology, the acquisition of 3D model data in archaeology will be used as basic data for preservation and active research of cultural heritage.

GPR Development for Landmine Detection (지뢰탐지를 위한 GPR 시스템의 개발)

  • Sato, Motoyuki;Fujiwara, Jun;Feng, Xuan;Zhou, Zheng-Shu;Kobayashi, Takao
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.4
    • /
    • pp.270-279
    • /
    • 2005
  • Under the research project supported by Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), we have conducted the development of GPR systems for landmine detection. Until 2005, we have finished development of two prototype GPR systems, namely ALIS (Advanced Landmine Imaging System) and SAR-GPR (Synthetic Aperture Radar-Ground Penetrating Radar). ALIS is a novel landmine detection sensor system combined with a metal detector and GPR. This is a hand-held equipment, which has a sensor position tracking system, and can visualize the sensor output in real time. In order to achieve the sensor tracking system, ALIS needs only one CCD camera attached on the sensor handle. The CCD image is superimposed with the GPR and metal detector signal, and the detection and identification of buried targets is quite easy and reliable. Field evaluation test of ALIS was conducted in December 2004 in Afghanistan, and we demonstrated that it can detect buried antipersonnel landmines, and can also discriminate metal fragments from landmines. SAR-GPR (Synthetic Aperture Radar-Ground Penetrating Radar) is a machine mounted sensor system composed of B GPR and a metal detector. The GPR employs an array antenna for advanced signal processing for better subsurface imaging. SAR-GPR combined with synthetic aperture radar algorithm, can suppress clutter and can image buried objects in strongly inhomogeneous material. SAR-GPR is a stepped frequency radar system, whose RF component is a newly developed compact vector network analyzers. The size of the system is 30cm x 30cm x 30 cm, composed from six Vivaldi antennas and three vector network analyzers. The weight of the system is 17 kg, and it can be mounted on a robotic arm on a small unmanned vehicle. The field test of this system was carried out in March 2005 in Japan.

The Impacts of Entrepreneurial Proclivity and Merchandising Strategy on Conventional Market and Its Policy Implications (한국 재래시장상인의 창업가정신과 상품화 전략이 시장이미지와 경영성과에 미치는 영향과 재래시장 정책에 대한 시사점)

  • Suh, Geun-Ha;Yoon, Sung-Wook;Suh, Chang-Soo
    • Journal of Distribution Science
    • /
    • v.7 no.3
    • /
    • pp.71-100
    • /
    • 2009
  • The main purpose of this study is to define relevant factors that influence successful start-ups and management innovations of traditional markets from the point of market structures and relations. To do this, we devide an entrepreneurship of merchant into two factors, risk taking and managerial experience and choose product planning and its implementation to see merchandising of traditional markets. In this study we identify that several factors we chose are contributing to generating management performances through market promotional parameters. Also we confirm that image factors of traditional markets is consist of awareness and value of markets, and that these factors shows some sequential and continual patterns in the course of generating performances. In additions, it is identified that four independent factors have positive effects to star-up success; risk taking 0.29(t 2.61), managerial experience 0.04(t 1.79), merchandising implementation 0.374(t 2.61), market value 0.47(t 5.25), market awareness 0.22(t 2.30). This study can help merchants of traditional markets to make and change their market strategies, restructure their businesses and survive in the field. This also provide some ideas and guidances to relevant government agencies in formulating traditional market policies.

  • PDF

Evaluation of Seasonal Landscape Images and Preference of Streetscapes - Focusing on Street of Prunus Species - (계절별 가로 경관이미지 및 선호도 평가 - 벚나무류 가로를 대상으로 -)

  • Shin, Jae-Yun;Jung, Sung-Gwan;Kim, Kyung-Tae;Lee, Woo-Sung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.39 no.3
    • /
    • pp.51-63
    • /
    • 2011
  • The purpose of this study is to create a landscape image that considers the selection of techniques that can enhance landscape reproduction in streetscape evaluation using 3 dimensional simulations and to evaluate ways to verify similarities and the psychological changes on the part of users by season. In the comparison of technique, the Low(apply normal map) technique was selected for the natural representation of trees in a near and middle view and the Plane technique was selected for the distant view. As the result of the verification, all indicators of physical similarity were evaluated over 4.50 points and most indicators of psychological similarity were found to have no difference except for indicators of 'disordered orderly' and 'dirty - clean'. According to the results of analyzing the landscape simulation by season, images of 'bright', 'beautiful', and 'static', etc., were evaluated high for the spring streetscape. The images of 'open', 'refresh', and 'animate' appeared high in summer and images of 'warm' and 'dark' were found to be high in fall. On the other hand, all images were evaluated as low except for the 'orderly' image. In the preference of streetscape by season, summer and spring were highly preferred at 5.01 and 4.98 with winter as the lowest at 3.48. As the results of the analysis of preference factor, the spring streetscape was found to be a major influence in preference by 0.540 in 'aesthetics'. In the case of summer, 'order' was found to be high at 0.417 while influences in preference included 'variety' and 'aesthetics' in fall and 'variety', 'aesthetics', and 'order' in winter. A determination of suitable spatial planning using a comparative analysis of various city streets will be enabled through the methods of this study.

Kit Preparation and Biodistribution of $Bz-MAG_3$ (benzoylmercaptoacetylglycylglycylglycine) for Renal Imaging (신장기능영상용 방사성의 약품 $Bz-MAG_3$(Benzoylmercaptoacetylglycylglycylglycine) 의 키트화 및 체내분포)

  • Kim, Young-Ju;Jeong, Jae-Min;Cho, Jung-Hyuk;Chang, Young-Soo;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.3
    • /
    • pp.367-371
    • /
    • 1996
  • The $MAG_3$ is a tubular excreting radiopharmaceutical for renal image. We synthesized benzoyl $MAG_3\;(Bz-MAG_3)$ and made a kit for labeling with $^{99m}Tc$. We checked the labeling efficieny of $^{99m}Tc$ labeled $MAG_3$ and biodistribution. Labeling efficieny was checked by TLC-SG (acetonitrile/$H_2O$=2/1). After injecting of 1 mCi of $^{99m}Tc-MAG_3$ to ICR-mice, $T_{max}(min),\;T_{1/2}(min)$ were obtained in the renogram. Sequential images (30sec, 2min, 5min, 10min, 15min, 20min) of $^{99m}Tc-MAG_3$ were compared with those of commercial $^{99m}Tc$-DTPA (Du Pont Merck Pharmaceutical Co.) kit. 1) The $R_f$ value of synthesized $^{99m}Tc-MAG_3$ was 0.78 and labeling efficiency was $97.5{\pm}1.9%$ (n=10). 2) The dynamic images of the $^{99m}Tc-MAG_3$ were better than those of the $^{99m}Tc$-DTPA. 3) The $T_{max}(min.)$ and $T_{1/2}(min.)$ of $^{99m}Tc-MAG_3$ (n=10) were $1.5{\pm}0.5$ (left), $1.4{\pm}0.4$ (right), and $4.3{\pm}1.4$ (left), $4.8{\pm}2.0$ (right), respectively. The $T_{max}(min.)$ and $T_{1/2}(min.)$ of $^{99m}Tc$-DTPA (n=7) were $2.7{\pm}1.6$ (left), $2.7{\pm}1.6$ (right), and $3.8{\pm}1.7$ (left), $4.5{\pm}2.7$ (right), respectively. The quaility of image and labeling efficiency of the synthesized $Bz-MAG_3$ kit were excellent, that it was supposed to be used in routine clinical work.

  • PDF

Research of z-axis geometric dose efficiency in multi-detector computed tomography (MDCT 장치의 z-축 기하학적 선량효율에 관한 연구)

  • Kim, You-Hyun;Kim, Moon-Chan
    • Journal of radiological science and technology
    • /
    • v.29 no.3
    • /
    • pp.167-175
    • /
    • 2006
  • With the recent prevalence of helical CT and multi-slice CT, which deliver higher radiation dose than conventional CT due to overbeaming effect in X-ray exposure and interpolation technique in image reconstruction. Although multi-detector and helical CT scanner provide a variety of opportunities for patient dose reduction, the potential risk for high radiation levels in CT examination can't be overemphasized in spite of acquiring more diagnostic information. So much more concerns is necessary about dose characteristics of CT scanner, especially dose efficient design as well as dose modulation software, because dose efficiency built into the scanner's design is probably the most important aspect of successful low dose clinical performance. This study was conducted to evaluate z-axis geometric dose efficiency in single detector CT and each level multi-detector CT, as well as to compare z-axis dose efficiency with change of technical scan parameters such as focal spot size of tube, beam collimation, detector combination, scan mode, pitch size, slice width and interval. The results obtained were as follows ; 1. SDCT was most highest and 4 MDCT was most lowest in z-axis geometric dose efficiency among SDCT, 4, 8, 16, 64 slice MDCT made by GE manufacture. 2. Small focal spot was 0.67-13.62% higher than large focal spot in z-axis geometric dose efficiency at MDCT. 3. Large beam collimation was 3.13-51.52% higher than small beam collimation in z-axis geometric dose efficiency at MDCT. 4. Z-axis geometric dose efficiency was same at 4 slice MDCT in all condition and 8 slice MDCT of large beam collimation with change of detector combination, but was changed irregularly at 8 slice MDCT of small beam collimation and 16 slice MDCT in all condition with change of detector combination. 5. There was no significant difference for z-axis geometric dose efficiency between conventional scan and helical scan, and with change of pitch factor, as well as change of slice width or interval for image reconstruction. As a conclusion, for reduction of patient radiation dose delivered from CT examination we are particularly concerned with dose efficiency of equipment and have to select proper scanning parameters which increase z-axis geometric dose efficiency within the range of preserving optimum clinical information in MDCT examination.

  • PDF