DOI QR코드

DOI QR Code

Estimation of Rice Canopy Height Using Terrestrial Laser Scanner

레이저 스캐너를 이용한 벼 군락 초장 추정

  • Dongwon Kwon (National Institute of Crop Science, Rural Development Administration) ;
  • Wan-Gyu Sang (National Institute of Crop Science, Rural Development Administration) ;
  • Sungyul Chang (National Institute of Crop Science, Rural Development Administration) ;
  • Woo-jin Im (National Institute of Crop Science, Rural Development Administration) ;
  • Hyeok-jin Bak (National Institute of Crop Science, Rural Development Administration) ;
  • Ji-hyeon Lee (National Institute of Crop Science, Rural Development Administration) ;
  • Jung-Il Cho (National Institute of Crop Science, Rural Development Administration)
  • 권동원 (국립식량과학원 작물재배생리과) ;
  • 상완규 (국립식량과학원 작물재배생리과) ;
  • 장성율 (국립식량과학원 작물재배생리과) ;
  • 임우진 (국립식량과학원 작물재배생리과) ;
  • 박혁진 (국립식량과학원 작물재배생리과) ;
  • 이지현 (국립식량과학원 작물재배생리과) ;
  • 조정일 (국립식량과학원 작물재배생리과)
  • Received : 2023.11.04
  • Accepted : 2023.12.27
  • Published : 2023.12.30

Abstract

Plant height is a growth parameter that provides visible insights into the plant's growth status and has a high correlation with yield, so it is widely used in crop breeding and cultivation research. Investigation of the growth characteristics of crops such as plant height has generally been conducted directly by humans using a ruler, but with the recent development of sensing and image analysis technology, research is being attempted to digitally convert growth measurement technology to efficiently investigate crop growth. In this study, the canopy height of rice grown at various nitrogen fertilization levels was measured using a laser scanner capable of precise measurement over a wide range, and a comparative analysis was performed with the actual plant height. As a result of comparing the point cloud data collected with a laser scanner and the actual plant height, it was confirmed that the estimated plant height measured based on the average height of the top 1% points showed the highest correlation with the actual plant height (R2 = 0.93, RMSE = 2.73). Based on this, a linear regression equation was derived and used to convert the canopy height measured with a laser scanner to the actual plant height. The rice growth curve drawn by combining the actual and estimated plant height collected by various nitrogen fertilization conditions and growth period shows that the laser scanner-based canopy height measurement technology can be effectively utilized for assessing the plant height and growth of rice. In the future, 3D images derived from laser scanners are expected to be applicable to crop biomass estimation, plant shape analysis, etc., and can be used as a technology for digital conversion of conventional crop growth assessment methods.

식물의 초장은 작물의 생육상태를 가시적으로 파악 할 수 있는 생육지표로 수량과 상관성이 높아 작물 육종이나 재배 연구에 널리 사용된다. 초장과 같은 작물의 생육특성 조사는 전통적으로 자를 이용하여 사람이 직접 조사하였으나 최근 센싱, 영상 기술이 발전하면서 작물의 생육을 효율적으로 조사하기 위해 생육계측 기술을 디지털 전환하려는 연구가 시도되고 있다. 본 연구에서는 넓은 범위에 걸쳐 정밀한 측정이 가능한 레이저 스캐너를 사용하여 다양한 질소 시비 수준에서 재배된 벼 군락의 높이를 측정하고 실측 초장과 비교 분석을 수행하였다. 군락의 높이는 레이저 스캐너로 수집된 포인트 클라우드의 상위 1% 점의 높이를 계산하여 측정하였다. 상위 1% 점의 높이를 이용하여 추정한 초장이 실측 초장과 가장 높은 결정계수를 보였고(R2 = 0.93, RMSE = 2.73), 선형회귀식을 도출하 여 이를 근거로 레이저 스캐너로 측정된 군락의 높이를 실측 초장으로 변환하였다. 질소 시비 조건 및 생육 시기별로 수집된 실측 초장과 추정 값(레이저 스캐너로 측정된 군락 높이 기반으로 계산된 초장)을 종합하여 벼의 생육그래프를 도출한 결과, 레이저 스캐너 기반 초장 측정 기술이 벼의 초장과 생육을 평가하는데 충분히 활용될 수 있음을 확인할 수 있었다. 향후, 레이저 스캐너에서 도출된 3차원 영상은 작물 군락의 생육량 추정, 작물 초형 분석 등에 적용 가능할 것으로 판단되며, 기존 작물 생육조사 방식의 디지털 전환을 위한 기술로 활용될 수 있을 것이다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 아젠다 사업(사업번호: PJ016034012023)의 지원에 의해 이루어진 결과로 이에 감사드립니다.

References

  1. Cornelissen, J. H. C., S. L., E. Garnier, S. Diaz, N. Buchmann, D. E. Gurvich, P. B. Reich, H. ter Steege, H. D. Morgan, M. G. A. van der Heijden, J. G. Pausas and H. Poorter, 2003: A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51(4), 335-380. https://doi.org/10.1071/BT02124 
  2. Friedli, M., N. Kirchgessner, C. Grieder, F. Liebisch, M. Mannale and A. Walter, 2016: Terrestrial 3D laser scanning to track the increase in canopy height of both monocot and dicot crop species under field conditions. Plant Methods 12, 9. https://doi.org/10.1186/s13007-016-0109-7 
  3. Guo, T., Y. Fang, T. Cheng, Y. Tian, Y. Zhu, Q. Chen, X. Qiu and X. Yao, 2019: Detection of wheat height using optimized multi-scan mode of LiDAR during the entire growth stages. Computers and Electronics in Agriculture 165, 104959. https://doi.org/https://doi.org/10.1016/j.compag.2019.104959 
  4. Hartmann, A., T. Czauderna, R. Hoffmann, N. Stein and F. Schreiber, 2011: HTPheno: an image analysis pipeline for high-throughput plant phenotyping. BMC Bioinformatics 12, 148. https://doi.org/10.1186/1471-2105-12-148 
  5. Hilty, J., B. Muller, F. Pantin and S. Leuzinger, 2021: Plant growth: the What, the How, and the Why. New Phytol 232(1), 25-41. https://doi.org/10.1111/nph.17610 
  6. Inamura, T., H. Hamada, K. Iida and M. Umeda, 2003: Correlation of the Amount of Nitrogen Accumulated in the Aboveground Biomass at Panicle Initiation and Nitrogen Content of Soil with the Nitrogen Uptake by Lowland Rice during the Period from Panicle Initiation to Heading. Plant Production Science 6(4), 302-308. https://doi.org/10.1626/pps.6.302 
  7. Jiang, Y., C. Li and A. H. Paterson, 2016: High throughput phenotyping of cotton plant height using depth images under field conditions. Computers and Electronics in Agriculture 130, 57-68. https://doi.org/https://doi.org/10.1016/j.compag. 2016.09.017 
  8. Kwon, D. W., S. Y. Chang, H. Y. Ban, H. Bak, W. G. Sang, J. K. Baek, M. C. Seo, J. I. Cho and J. I. Cho, 2023: Evaluation of Soybean Growth Measurement Method Using 3-Dimensional Data. Journal of Agriculture & Life Science 57(1), 107-118. (in Korean with English abstract) 
  9. Kozlowski, T. T., and S. G. Pallardy, 1997: CHAPTER 5 - Photosynthesis, T. T. Kozlowski and S. G. Pallardy (Eds.), Physiology of Woody Plants (Second Edition), 87-133. https://doi.org/https://doi.org/10.1016/B978-012424162-6/50022-3 
  10. Mano, M., 2017: Precise and continuous measurement of plant heights in an agricultural field using a time-lapse camera. Journal of Agricultural Meteorology 73(3), 100-108. https://doi.org/10.2480/agrmet.D-16-00021 
  11. Moldenhauer, K. and N. Slaton, 2001: Rice growth and development. Rice production handbook 192, 7-14. 
  12. Montazeaud, G., C. Langrume, S. Moinard, C. Goby, A. Ducanchez, B. Tisseyre and G. Brunel, 2021: Development of a low cost open-source ultrasonic device for plant height measurements. Smart Agricultural Technology 1, 100022. https://doi.org/10.1016/j.atech.2021.100022 
  13. Morrison, M. J., A. C. Gahagan and M. B. Lefebvre, 2021: Measuring canopy height in soybean and wheat using a low-cost depth camera. The Plant Phenome Journal 4(1). https://doi.org/10.1002/ppj2.20019 
  14. Neupane, C., A. Koirala, Z. Wang and K. B. Walsh, 2021: Evaluation of Depth Cameras for Use in Fruit Localization and Sizing: Finding a Successor to Kinect v2. Agronomy 11(9). https://doi.org/10.3390/agronomy11091780 
  15. Paturkar, A., G. Sen Gupta and D. Bailey, 2022: Plant trait measurement in 3D for growth monitoring. Plant Methods 18(1), 59. https://doi.org/10.1186/s13007-022-00889-9 
  16. Paulus, S., 2019: Measuring crops in 3D: using geometry for plant phenotyping. Plant Methods 15, 103. https://doi.org/10.1186/s13007-019-0490-0 
  17. Thi Phan, A. T., K. Takahashi, A. Rikimaru and Y. Higuchi, 2016: Method for estimating rice plant height without ground surface detection using laser scanner measurement. Journal of Applied Remote Sensing 10(4), 046018. https://doi.org/10.1117/1.JRS.10.046018 
  18. Tilly, N., D. Hoffmeister, Q. Cao, V. Lenz-Wiedemann, Y. Miao and G. Bareth, 2013: Precise plant height monitoring and biomass estimation with Terrestrial Laser Scanning in paddy rice. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences II-5/W2, 295-300. https://doi.org/10.5194/isprsannals-II-5-W2-295-2013
  19. Wang, X., D. Singh, S. Marla, G. Morris and J. Poland, 2018: Field-based high-throughput phenotyping of plant height in sorghum using different sensing technologies. Plant Methods 14, 53. https://doi.org/10.1186/s13007-018-0324-5 
  20. Wang, Y., J. Lu, T. Ren, S. Hussain, C. Guo, S. Wang, R. Cong and X. Li, 2017: Effects of nitrogen and tiller type on grain yield and physiological responses in rice. AoB PLANTS 9(2), plx012. https://doi.org/10.1093/aobpla/plx012 
  21. Wu, D.-H., C.-T. Chen, M.-D. Yang, Y.-C. Wu, C.-Y. Lin, M.-H. Lai and C.-Y. Yang, 2022: Controlling the lodging risk of rice based on a plant height dynamic model. Botanical Studies 63(1), 25. https://doi.org/10.1186/s40529-022-00356-7 Zhou, W., Z. Yang, T. Wang, Y. Fu, Y. Chen, B. 
  22. Hu, J. Yamagishi and W. Ren, 2019: Environmental Compensation Effect and Synergistic Mechanism of Optimized Nitrogen Management Increasing Nitrogen Use Efficiency in Indica Hybrid Rice [Original Research]. Front Plant Science 10, 245. https://doi.org/10.3389/fpls.2019.00245