• Title/Summary/Keyword: image stabilization

Search Result 168, Processing Time 0.025 seconds

Improvement of Dynamic Characteristics of an Optical Image Stabilizer in a Compact Camera (초소형 카메라 흔들림 보정장치의 동특성 개선)

  • Song, Myeong-Gyu;Son, Dong-Hun;Park, No-Cheol;Park, Kyoung-Su;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.2
    • /
    • pp.178-185
    • /
    • 2011
  • Optical image stabilization is a device to compensate the camera movement in the exposure time. The compensation is implemented by movable lens or image sensor that adjusts the optical path to the camera movement. Generally, the camera is moved by a handshake, thus the handshake is considered as an external disturbance. However, there are many other vibrations such as car and train vibration. In this paper, the optical image stabilization system in high frequency region is presented. Notch filter and lead compensator are designed and applied to improve the stability without changing the actuator. To verify the performance of the optical image stabilization system in high frequency region, the experiment equipment with moving object is established. It is confirmed that the opticalimage stabilization system does not diverge at the resonance frequency.

A Study on an Image Stabilization for Car Vision System (차량용 비전 시스템을 위한 영상 안정화에 관한 연구)

  • Lew, Sheen;Lee, Wan-Joo;Kang, Hyun-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.4
    • /
    • pp.957-964
    • /
    • 2011
  • The image stabilization is the procedure of stabilizing the blurred image with image processing method. Due to easy detection of global motion, PA(Projection algorithm) based on digital image stabilization has been studied by many researchers. PA has the advantage of easy implementation and low complexity, but in the case of serious rotational motion the accuracy of the algorithm will be cut down because of its fixed exploring range, and, on the other hand, if extending the exploring range, the block for detecting motion will become small, then we cannot detect correct global motion. In this paper, to overcome the drawback of conventional PA, an Iterative Projection Algorithm (IPA) is proposed, which improved the correctness of global motion by detecting global motion with detecting block which is appropriate to different extent of motion. With IPA, in the case of processing 1000 continual frames shot in automobile, compared with conventional algorithm and other detecting range, the results of PSNR is improved 6.8% at least, and 28.9% at the most.

Digital Image Stabilization Based on Edge Detection and Lucas-Kanade Optical Flow (Edge Detection과 Lucas-Kanade Optical Flow 방식에 기반한 디지털 영상 안정화 기법)

  • Lee, Hye-Jung;Choi, Yun-Won;Kang, Tae-Hun;Lee, Suk-Gyu
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.2
    • /
    • pp.85-92
    • /
    • 2010
  • In this paper, we propose a digital image stabilization technique using edge detection and Lucas-Kanade optical flow in order to minimize the motion of the shaken image. The accuracy of motion estimation based on block matching technique depends on the size of search window, which results in long calculation time. Therefore it is not applicable to real-time system. In addition, since the size of vector depends on that of block, it is difficult to estimate the motion which is bigger than the block size. The proposed method extracts the trust region using edge detection, to estimate the motion of some critical points in trust region based on Lucas-Kanade optical flow algorithm. The experimental results show that the proposed method stabilizes the shaking of motion image effectively in real time.

Digital Image Stabilization Technique of Robot using Motion Sensor (모션센서를 이용한 로봇의 디지털 영상 보정 기술)

  • Oh, Jung-Suk;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.317-322
    • /
    • 2009
  • If vibration occurs due to fast movement of the robot, the camera image is unstable. No longer the eyes of a robot can not perform the role. Research methods for the stabilization of shaky video is required. The most popular method is to use the motion vector. But, the drawback to this method will require a large amount of operation. And the limits of the embedded robot. Therefore, in real-time transmission of images to be difficult. This paper proposes a motion sensor using the image stabilization. Uses data that is output from the motion sensor. So, not related to the progress of the robot movement is a way to remove it from the video.

Design of Ball Bearing Type OIS Actuator for Mobile Camera Module (모바일 카메라 모듈용 볼베어링 방식 OIS 액추에이터 설계)

  • Song, Myeong-Gyu;Son, Dong-Hun;Park, No-Cheol;Park, Kyoung-Su;Park, Young-Pil;Lim, Soo-Cheol
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.4
    • /
    • pp.361-372
    • /
    • 2010
  • Optical image stabilization is a technique to compensate the image blurring caused by some vibrations of camera at the exposure time. Pitching and yawing of camera are sensitive to the image quality so they are usually compensated by optical image stabilization. Corresponding pitching and yawing of a camera, a lens or the image sensor is translated in two-axis direction and then the optical path of camera is adjusted. In this paper, two-axis OIS actuator for mobile camera module is suggested and designed. The actuator is a voice-coil actuator that uses the electromagnetic force of voice-coil to make compensation motions. And ball bearing is used to reduce friction force. Magnetic attractive force between magnets and yokes acts as a preload and magnet springs. Prototype actuator is fabricated to measure the friction force and to verify the feasibility of the OIS actuator with ball bearing. At last, the actuator is improved in consideration of driving force and friction force. Design of experiments is used for designing the actuator.

A Study on an Image Stabilization in Moving Vehicle (이동 차량에서 영상 안정화에 관한 연구)

  • Tak, Soo-Yong;Ban, Jae-Min;Lew, Sheen;Lee, Wan-Joo;Lee, Byeong-Rae;Kang, Hyun-Chul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.4
    • /
    • pp.95-104
    • /
    • 2012
  • In the image captured by the camera in a moving vehicle, there exist various motions due to the change of background, motion of objects in the image that make difficult to extract a pure vibrational motion by the camera. In this paper, we suggest an image stabilization with the elimination of various motion components based on the classification of motions in the image by their characteristics. After the elimination of various local motions, images are compensated and stabilized with the global motion caused by the camera. Also, we suggest an accurate and fast image stabilization by excluding regions of little information based on block differences and edge densities.

A Method for Object Tracking Based on Background Stabilization (동적 비디오 기반 안정화 및 객체 추적 방법)

  • Jung, Hunjo;Lee, Dongeun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.1
    • /
    • pp.77-85
    • /
    • 2018
  • This paper proposes a robust digital video stabilization algorithm to extract and track an object, which uses a phase correlation-based motion correction. The proposed video stabilization algorithm consists of background stabilization based on motion estimation and extraction of a moving object. The motion vectors can be estimated by calculating the phase correlation of a series of frames in the eight sub-images, which are located in the corner of the video. The global motion vector can be estimated and the image can be compensated by using the multiple local motions of sub-images. Through the calculations of the phase correlation, the motion of the background can be subtracted from the former frame and the compensated frame, which share the same background. The moving objects in the video can also be extracted. In this paper, calculating the phase correlation to track the robust motion vectors results in the compensation of vibrations, such as movement, rotation, expansion and the downsize of videos from all directions of the sub-images. Experimental results show that the proposed digital image stabilization algorithm can provide continuously stabilized videos and tracking object movements.

Estimation of Rotational Center and Angle for Image Stabilization (영상 안정화를 위한 회전중심 및 각도 추정기법)

  • Seok, Ho-Dong;Yoo, Jun;Kim, Do-Jong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.7
    • /
    • pp.611-617
    • /
    • 2004
  • This paper presents a simple method of rotational motion estimation and correction for roll axis stabilization of an image. The scheme first computes the rotation center by taking least squares of selected local velocity vectors, and the rotational angle is found from special subset of motion vectors. Roll motion correction is then performed by the nearest neighbor interpolation technique. To show the effectiveness of our approach, the synthetic and real images are evaluated, resulting in better performance than the previous ones.

Estimation of Rotation Center and Rotation Angle for Real-time Image Stabilization of Roll Axis. (실시간 회전영상 안정화를 위한 회전중심 및 회전각도 추정 방법)

  • Cho, Jae-Soo;Kim, Do-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.153-155
    • /
    • 2004
  • This paper proposes a real-time approach on the rotational motion estimation and correction for the roll stabilization of the sight system. This method first estimates a rotation center by the least-mean square algorithm based on the motion vectors of some feature points. And, then, a rotation angle is searched for a best matching block between a reference block image and seccessive input images using MPC(maximum pixel count) matching criterion. Finally, motion correction is performed by the bilinear interpolation technique. Various computer simulations show that the estimation performance is good and the proposed algorithm is a real-time implementable one to the TMS320C6415(500MHz) DSP.

  • PDF

A method for image processing by use of inertial data of camera

  • Kaba, K.;Kashiwagi, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.221-225
    • /
    • 1998
  • This paper is to present a method for recognizing an image of a tracking object by processing the image from a camera, whose attitude is controlled in inertial space with inertial co-ordinate system. In order to recognize an object, a pseudo-random M-array is attached on the object and it is observed by the camera which is controlled on inertial coordinate basis by inertial stabilization unit. When the attitude of the camera is changed, the observed image of M-array is transformed by use of affine transformation to the image in inertial coordinate system. Taking the cross-correlation function between the affine-transformed image and the original image, we can recognize the object. As parameters of the attitude of the camera, we used the azimuth angle of camera, which is de-fected by gyroscope of an inertial sensor, and elevation an91e of camera which is calculated from the gravitational acceleration detected by servo accelerometer.

  • PDF