• Title/Summary/Keyword: image segmentation technique

Search Result 350, Processing Time 0.03 seconds

Computer Vision System for Automatic Grading of Ginseng - Development of Image Processing Algorithms - (인삼선별의 자동화를 위한 컴퓨터 시각장치 - 등급 자동판정을 위한 영상처리 알고리즘 개발 -)

  • 김철수;이중용
    • Journal of Biosystems Engineering
    • /
    • v.22 no.2
    • /
    • pp.227-236
    • /
    • 1997
  • Manual grading and sorting of red-ginsengs are inherently unreliable due to its subjective nature. A computerized technique based on optical and geometrical characteristics was studied for the objective quality evalution. Spectral reflectance of three categories of red-ginsengs - "Chunsam", "Chisam", "Yangsam" - were measured and analyzed. Variation of reflectance among parts of a single ginseng was more significant than variation among the quality categories of ginsengs. A PC-based image processing algorithm was developed to extract geometrical features such as length and thickness of body, length and number of roots, position of head and branch point, etc. The algorithm consisted of image segmentation, calculation of Euclidean distance, skeletonization and feature extraction. Performance of the algorithm was evaluated using sample ginseng images and found to be mostly sussessful.

  • PDF

AUTOMATIC BUILDING EXTRACTION BASED ON MULTI-SOURCE DATA FUSION

  • Lu, Yi Hui;Trinder, John
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.248-250
    • /
    • 2003
  • An automatic approach and strategy for extracting building information from aerial images using combined image analysis and interpretation techniques is described in this paper. A dense DSM is obtained by stereo image matching. Multi-band classification, DSM, texture segmentation and Normalised Difference Vegetation Index (NDVI) are used to reveal building interest areas. Then, based on the derived approximate building areas, a shape modelling algorithm based on the level set formulation of curve and surface motion has been used to precisely delineate the building boundaries. Data fusion, based on the Dempster-Shafer technique, is used to interpret simultaneously knowledge from several data sources of the same region, to find the intersection of propositions on extracted information derived from several datasets, together with their associated probabilities. A number of test areas, which include buildings with different sizes, shape and roof colour have been investigated. The tests are encouraging and demonstrate that the system is effective for building extraction, and the determination of more accurate elevations of the terrain surface.

  • PDF

Brain Extraction of MR Images

  • Du, Ruoyu;Lee, Hyo Jong
    • Annual Conference of KIPS
    • /
    • 2010.04a
    • /
    • pp.455-458
    • /
    • 2010
  • Extracting the brain from magnetic resonance imaging head scans is an essential preprocessing step of which the accuracy greatly affects subsequent image analysis. The currently popular Brain Extraction Tool produces a brain mask which may be too smooth for practical use to reduce the accuracy. This paper presents a novel and indirect brain extraction method based on non-brain tissue segmentation. Based on ITK, the proposed method allows a non-brain contour by using region growing to match with the original image naturally and extract the brain tissue. Experiments on two set of MRI data and 2D brain image in horizontal plane and 3D brain model indicate successful extraction of brain tissue from a head.

A Study on Face Detection Using Template Matching and Elliptical Information (템플릿과 타원정보를 이용한 얼굴검출에 관한 연구)

  • Kang, Woo-Seok;Kim, Hyun-Sool;Park, Nam-Jun;Park, Sang-Hui
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.615-617
    • /
    • 1998
  • This paper proposes a new segmentation method of human races from grey scale images with clutter using a racial template and elliptical structure of the human head. Face detection technique can be applied in many areas of image processing such as face recognition, composition and computer graphics. Until now, many researches about face detection have been conducted, and applications in more complicated conditions are increasing. The general case is more in a complicated background than in a simple one, and a image with not only one face. Research and development of face detection in such a general case are growing rapidly, and the necessity for that is increasing continuously. Sirohey proposed a face detection method using linearized elliptical equation. The method designed in this paper is improved to be applicable even in the more general cases like where the face is much smaller than the image size and with many faces in one image using template matching and elliptic fitting technique.

  • PDF

Multiple Texture Image Recognition with Unsupervised Block-based Clustering (비교사 블록-기반 군집에 의한 다중 텍스쳐 영상 인식)

  • Lee, Woo-Beom;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.327-336
    • /
    • 2002
  • Texture analysis is an important technique in many image understanding areas, such as perception of surface, object, shape and depth. But the previous works are intend to the issue of only texture segment, that is not capable of acquiring recognition information. No unsupervised method is basased on the recognition of texture in image. we propose a novel approach for efficient texture image analysis that uses unsupervised learning schemes for the texture recognition. The self-organization neural network for multiple texture image identification is based on block-based clustering and merging. The texture features used are the angle and magnitude in orientation-field that might be different from the sample textures. In order to show the performance of the proposed system, After we have attempted to build a various texture images. The final segmentation is achieved by using efficient edge detection algorithm applying to block-based dilation. The experimental results show that the performance of the system Is very successful.

Quantitative Evaluation of Fiber Dispersion of the Fiber-Reinforced Cement Composites Using an Image Processing Technique (이미지 프로세싱 기법을 이용한 섬유복합재료의 정량적인 섬유분산성 평가)

  • Kim, Yun-Yong;Lee, Bang-Yeon;Kim, Jeong-Su;Kim, Jin-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.148-156
    • /
    • 2007
  • The fiber dispersion in fiber-reinferced cementitious composites is a crucial factor with respect to achieving desired mechanical performance. However, evaluation of the fiber dispersion in the composite PVA-ECC (polyvinyl alcohol-engineered cementitious composite) is extremely challenging because of the low contrast of PVA fibers with the cement-based matrix. In the present work, a new evaluation method is developed and demonstrated. Using a fluorescence technique on the PVA-ECC, PVA fibers are observed as green dots in the cross-section of the composite. After capturing the fluorescence image with a charged couple device (CCD) camera through a microscope, the fiber dispersion is evaluated using an image processing technique and statistical tools. In this image processing technique, the fibers are more accurately detected by employing an enhanced algorithm developed based on a discriminant method and watershed segmentation. The influence of fiber orientation on the fiber dispersion evaluation was also investigated via shape analyses of fiber images.

Face and Iris Detection Algorithm based on SURF and circular Hough Transform (서프 및 하프변환 기반 운전자 동공 검출기법)

  • Artem, Lenskiy;Lee, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.5
    • /
    • pp.175-182
    • /
    • 2010
  • The paper presents a novel algorithm for face and iris detection with the application for driver iris monitoring. The proposed algorithm consists of the following major steps: Skin-color segmentation, facial features segmentation, and iris positioning. For the skin-segmentation we applied a multi-layer perceptron to approximate the statistical probability of certain skin-colors, and filter out those with low probabilities. The next step segments the face region into the following categories: eye, mouth, eye brow, and remaining facial regions. For this purpose we propose a novel segmentation technique based on estimation of facial class probability density functions (PDF). Each facial class PDF is estimated on the basis of salient features extracted from a corresponding facial image region. Then pixels are classified according to the highest probability selected from four estimated PDFs. The final step applies the circular Hough transform to the detected eye regions to extract the position and radius of the iris. We tested our system on two data sets. The first one is obtained from the Web and contains faces under different illuminations. The second dataset was collected by us. It contains images obtained from video sequences recorded by a CCD camera while a driver was driving a car. The experimental results are presented, showing high detection rates.

Automatic Segmentation of the meniscus based on Active Shape Model in MR Images through Interpolated Shape Information (MR 영상에서 중간형상정보 생성을 통한 활성형상모델 기반 반월상 연골 자동 분할)

  • Kim, Min-Jung;Yoo, Ji-Hyun;Hong, Helen
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.11
    • /
    • pp.1096-1100
    • /
    • 2010
  • In this paper, we propose an automatic segmentation of the meniscus based on active shape model using interpolated shape information in MR images. First, the statistical shape model of meniscus is constructed to reflect the shape variation in the training set. Second, the generation technique of interpolated shape information by using the weight according to shape similarity is proposed to robustly segment the meniscus with large variation. Finally, the automatic meniscus segmentation is performed through the active shape model fitting. For the evaluation of our method, we performed the visual inspection, accuracy measure and processing time. For accuracy evaluation, the average distance difference between automatic segmentation and semi-automatic segmentation are calculated and visualized by color-coded mapping. Experimental results show that the average distance difference was $0.54{\pm}0.16mm$ in medial meniscus and $0.73{\pm}0.39mm$ in lateral meniscus. The total processing time was 4.87 seconds on average.

Stable Model for Active Contour based Region Tracking using Level Set PDE

  • Lee, Suk-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.666-670
    • /
    • 2011
  • In this paper, we propose a stable active contour based tracking method which utilizes the bimodal segmentation technique to obtain a background color diminished image frame. The proposed method overcomes the drawback of the Mansouri model which is liable to fall into a local minimum state when colors appear in the background that are similar to the target colors. The Mansouri model has been a foundation for active contour based tracking methods, since it is derived from a probability based interpretation. By stabilizing the model with the proposed speed function, the proposed model opens the way to extend probability based active contour tracking for practical applications.

Surface Segmentation and Feature Description using the Signature Technique (Signature 기법을 이용한 면의 특징 표현 및 분할 기법)

  • 이보형;한헌수
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.12
    • /
    • pp.90-97
    • /
    • 1997
  • This paper presents a new algorithm for surface segmentation and feature description. The algorithm extracts the signature of an edge image based on the signature technqique[12] in the first stage. If there exists a range in the angle axis where more than two signatures form a closed curve, we can conclude there is a surface inside the range. Using this feature of the signature, surfaces can be segmented. The surface features such as number of vertices, number of edges, and type of surfaces can also be extracted by finding the signatures of individual surfaces. This algorithm has distinguished advantages: it can easily recover the lost part occuring in the edge iage using the curve fitting method and it can extract surface features even when surfaces are rotated in 3-D space.

  • PDF