• Title/Summary/Keyword: image segmentation technique

Search Result 350, Processing Time 0.035 seconds

Deep Learning-based Pixel-level Concrete Wall Crack Detection Method (딥러닝 기반 픽셀 단위 콘크리트 벽체 균열 검출 방법)

  • Kang, Kyung-Su;Ryu, Han-Guk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.2
    • /
    • pp.197-207
    • /
    • 2023
  • Concrete is a widely used material due to its excellent compressive strength and durability. However, depending on the surrounding environment and the characteristics of the materials used in the construction, various defects may occur, such as cracks on the surface and subsidence of the structure. The detects on the surface of the concrete structure occur after completion or over time. Neglecting these cracks may lead to severe structural damage, necessitating regular safety inspections. Traditional visual inspections of concrete walls are labor-intensive and expensive. This research presents a deep learning-based semantic segmentation model designed to detect cracks in concrete walls. The model addresses surface defects that arise from aging, and an image augmentation technique is employed to enhance feature extraction and generalization performance. A dataset for semantic segmentation was created by combining publicly available and self-generated datasets, and notable semantic segmentation models were evaluated and tested. The model, specifically trained for concrete wall fracture detection, achieved an extraction performance of 81.4%. Moreover, a 3% performance improvement was observed when applying the developed augmentation technique.

Semi-automatic Extraction of 3D Building Boundary Using DSM from Stereo Images Matching (영상 매칭으로 생성된 DSM을 이용한 반자동 3차원 건물 외곽선 추출 기법 개발)

  • Kim, Soohyeon;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1067-1087
    • /
    • 2018
  • In a study for LiDAR data based building boundary extraction, usually dense point cloud was used to cluster building rooftop area and extract building outline. However, when we used DSM generated from stereo image matching to extract building boundary, it is not trivial to cluster building roof top area automatically due to outliers and large holes of point cloud. Thus, we propose a technique to extract building boundary semi-automatically from the DSM created from stereo images. The technique consists of watershed segmentation for using user input as markers and recursive MBR algorithm. Since the proposed method only inputs simple marker information that represents building areas within the DSM, it can create building boundary efficiently by minimizing user input.

Automatic Detection System of Underground Pipe Using 3D GPR Exploration Data and Deep Convolutional Neural Networks

  • Son, Jeong-Woo;Moon, Gwi-Seong;Kim, Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.2
    • /
    • pp.27-37
    • /
    • 2021
  • In this paper, we propose Automatic detection system of underground pipe which automatically detects underground pipe to help experts. Actual location of underground pipe does not match with blueprint due to various factors such as ground changes over time, construction discrepancies, etc. So, various accidents occur during excavation or just by ageing. Locating underground utilities is done through GPR exploration to prevent these accidents but there are shortage of experts, because GPR data is enormous and takes long time to analyze. In this paper, To analyze 3D GPR data automatically, we use 3D image segmentation, one of deep learning technique, and propose proper data generation algorithm. We also propose data augmentation technique and pre-processing module that are adequate to GPR data. In experiment results, we found the possibility for pipe analysis using image segmentation through our system recorded the performance of F1 score 40.4%.

Performance evaluation of Edge-based Method for classification of Gelatin Capsules (젤라틴 캡슐의 분류를 위한 에지 기반 방법 성능 평가)

  • Kwon, Ki-Hyeon;Choi, In-Soo
    • Journal of Digital Contents Society
    • /
    • v.18 no.1
    • /
    • pp.159-165
    • /
    • 2017
  • In order to solve problems in automatic quality inspection of tablet capsules, computation-efficient image processing technique, appropriate threshold setting, edge detection and segmentation methods are required. And since existing automatic system for quality inspection of tablet capsules is of very high cost, it needs to be reduced through the realization of low-price hardware system. This study suggests a technique that uses low-cost camera module to obtain image and inspects dents on tablet capsules and sorting them by applying TLS curve fitting technique and edge-based image segmentation. In order to assess the performance, the major classifications algorithm of PCA, ICA and SVM are used to evaluate training time, test time and accuracy for capsule image area and curve fitting edge data sets.

Estimation of Populations of Moth Using Object Segmentation and an SVM Classifier (객체 분할과 SVM 분류기를 이용한 해충 개체 수 추정)

  • Hong, Young-Ki;Kim, Tae-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.705-710
    • /
    • 2017
  • This paper proposes an estimation method of populations of Grapholita molestas using object segmentation and an SVM classifier in the moth images. Object segmentation and moth classification were performed on images of Grapholita molestas moth acquired on a pheromone trap equipped in an orchard. Object segmentation consisted of pre-processing, thresholding, morphological filtering, and object labeling process. The classification of Grapholita molestas in the moth images consisted of the training and classification of an SVM classifier and estimation of the moth populations. The object segmentation simplifies the moth classification process by segmenting the individual objects before passing an input image to the SVM classifier. The image blocks were extracted around the center point and principle axis of the segmented objects, and fed into the SVM classifier. In the experiments, the proposed method performed an estimation of the moth populations for 10 moth images and achieved an average estimation precision rate of 97%. Therefore, it showed an effective monitoring method of populations of Grapholita molestas in the orchard. In addition, the mean processing time of the proposed method and sliding window technique were 2.4 seconds and 5.7 seconds, respectively. Therefore, the proposed method has a 2.4 times faster processing time than the latter technique.

The Effective Image Diagnosis Using Curved MPR from MDCT (MDCT에서 Curved MPR을 이용한 효과적인 영상진단)

  • Song, Jong-Nam;Jang, Yeong-Ill
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.2
    • /
    • pp.139-143
    • /
    • 2010
  • Two-dimensional(2D) images like Multi Planar Reconstruction(MPR) Image or Maximum Intensity Projection(MIP) were used for the purpose of diagnosis, but MPR image's quality were limited due to its superior limit of Z-axis ability to produce permitted radiation exposure virtuous in the permitted time limit from the existing Spiral CT. However, in company with the development of the Multi Detector Computed Tomography(MDCT), we were able to get the Data with the equal amount of Voxel, also get varied reconstructions as in the aspect of our needs. This present study propose a reconstruction technique which is to extract a field using Region of interest(ROI) segmentation method for improvement of the quality of the medical image and after that reconstruct the concerned part using the four-directed symmetry method of the oval, than using the reconstructed data, reorganize the image by using the Curved MPR method. If current proposed method is used, it is highly effective because of its ability to accurately display the disease concerned part, which will reduce the decoding time and also effectively provide information based on the accuracy of the decode.

  • PDF

Crack Detection of Concrete Structure Using Deep Learning and Image Processing Method in Geotechnical Engineering (딥러닝과 영상처리기법을 이용한 콘크리트 지반 구조물 균열 탐지)

  • Kim, Ah-Ram;Kim, Donghyeon;Byun, Yo-Seph;Lee, Seong-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.145-154
    • /
    • 2018
  • The damage investigation and inspection methods performed in concrete facilities such as bridges, tunnels, retaining walls and so on, are usually visually examined by the inspector using the surveying tool in the field. These methods highly depend on the subjectivity of the inspector, which may reduce the objectivity and reliability of the record. Therefore, the new image processing techniques are necessary in order to automatically detect the cracks and objectively analyze the characteristics of cracks. In this study, deep learning and image processing technique were developed to detect cracks and analyze characteristics in images for concrete facilities. Two-stage image processing pipeline was proposed to obtain crack segmentation and its characteristics. The performance of the method was tested using various crack images with a label and the results showed over 90% of accuracy on crack classification and segmentation. Finally, the crack characteristics (length and thickness) of the crack image pictured from the field were analyzed, and the performance of the developed technique was verified by comparing the actual measured values and errors.

Region-Based Moving Object Segmentation for Video Monitoring System (비디오 감시시스템을 위한 영역 기반의 움직이는 물체 분할)

  • 이경미;김종배;이창우;김항준
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.1
    • /
    • pp.30-38
    • /
    • 2003
  • This paper presents an efficient region-based motion segmentation method for segmenting of moving objects in a traffic scene with a focus on a Video Monitoring System (VMS). The presented method consists of two phases: motion detection and motion segmentation. Using the adaptive thresholding technique, the differences between two consecutive frames are analyzed to detect the movements of objects in a scene. To segment the detected regions into meaningful objects which have the similar intensity and motion information, the regions are initially segmented using a k-means clustering algorithm and then, the neighboring regions with the similar motion information are merged. Since we deal with not the whole image, but the detected regions in the segmentation phase, the computational cost is reduced dramatically. Experimental results demonstrate robustness in the occlusions among multiple moving objects and the change in environmental conditions as well.

A Study on the Generation of Ultrasonic Binary Image for Image Segmentation (Image segmentation을 위한 초음파 이진 영상 생성에 관한 연구)

  • Choe, Heung-Ho;Yuk, In-Su
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.6
    • /
    • pp.571-575
    • /
    • 1998
  • One of the most significant features of diagnostic ultrasonic instruments is to provide real time information of the soft tissues movements. Echocardiogram has been widely used for diagnosis of heart diseases since it is able to show real time images of heart valves and walls. However, the currently used ultrasonic images are deteriorated due to presence of speckle noises and image dropout. Therefore, it is very important to develop a new technique which can enhance ultrasonic images. In this study, a technique which extracts enhanced binary images in echocardiograms was proposed. For this purpose, a digital moving image file was made from analog echocardiogram, then it was stored as 8-bit gray-level for each frame. For an efficient image processing, the region containing the heat septum and tricuspid valve was selected as the region of interest(ROI). Image enhancement filters and morphology filters were used to reduce speckle noises in the images. The proposed procedure in this paper resulted in binary images with enhanced contour compared to those form the conventional threshold technique and original image processing technique which can be further implemented for the quantitative analysis of the left ventricular wall motion in echocardiogram by easy detection of the heart wall contours.

  • PDF

Novel Frame Interpolation Method for High Image Quality LCDs

  • Itoh, Goh;Mishima, Nao
    • Journal of Information Display
    • /
    • v.5 no.3
    • /
    • pp.1-7
    • /
    • 2004
  • We developed a novel frame interpolation method to interpolate a frame between two successive original frames. Using this method, we are able to apply a double-rate driving method instead of an impulse driving method where a black frame is inserted between two successive original frames. The double-rate driving method enables amelioration of the motion blur of LCDs caused by the characteristics of human vision without reducing the luminosity of the whole screen. The image quality of the double-rate driving method was also found to be better than that of an impulse driving method using our motion picture simulator and an actual panel. Our initial model of our frame interpolation method consists of motion estimation with a maximum matching pixel count estimation function, an area segmentation technique, and motion compensation with variable segmentation threshold. Although salt and pepper noise remained in a portion of an object mainly due to inaccuracy of motion estimation, we verified the validity of our method and the possibility of improvement in hold-type motion blurring.