• Title/Summary/Keyword: image segmentation method

Search Result 1,342, Processing Time 0.027 seconds

Studies of Automatic Dental Cavity Detection System as an Auxiliary Tool for Diagnosis of Dental Caries in Digital X-ray Image (디지털 X-선 영상을 통한 치아우식증 진단 보조 시스템으로써 치아 와동 자동 검출 프로그램 연구)

  • Huh, Jangyong;Nam, Haewon;Kim, Juhae;Park, Jiman;Shin, Sukyoung;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.52-58
    • /
    • 2015
  • The automated dental cavity detection program for a new concept intra-oral dental x-ray imaging device, an auxiliary diagnosis system, which is able to assist a dentist to identify dental caries in an early stage and to make an accurate diagnosis, was to be developed. The primary theory of the automatic dental cavity detection program is divided into two algorithms; one is an image segmentation skill to discriminate between a dental cavity and a normal tooth and the other is a computational method to analyze feature of an tooth image and take an advantage of it for detection of dental cavities. In the present study, it is, first, evaluated how accurately the DRLSE (Direct Regularized Level Set Evolution) method extracts demarcation surrounding the dental cavity. In order to evaluate the ability of the developed algorithm to automatically detect dental cavities, 7 tooth phantoms from incisor to molar were fabricated which contained a various form of cavities. Then, dental cavities in the tooth phantom images were analyzed with the developed algorithm. Except for two cavities whose contours were identified partially, the contours of 12 cavities were correctly discriminated by the automated dental caries detection program, which, consequently, proved the practical feasibility of the automatic dental lesion detection algorithm. However, an efficient and enhanced algorithm is required for its application to the actual dental diagnosis since shapes or conditions of the dental caries are different between individuals and complicated. In the future, the automatic dental cavity detection system will be improved adding pattern recognition or machine learning based algorithm which can deal with information of tooth status.

AI-Based Object Recognition Research for Augmented Reality Character Implementation (증강현실 캐릭터 구현을 위한 AI기반 객체인식 연구)

  • Seok-Hwan Lee;Jung-Keum Lee;Hyun Sim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1321-1330
    • /
    • 2023
  • This study attempts to address the problem of 3D pose estimation for multiple human objects through a single image generated during the character development process that can be used in augmented reality. In the existing top-down method, all objects in the image are first detected, and then each is reconstructed independently. The problem is that inconsistent results may occur due to overlap or depth order mismatch between the reconstructed objects. The goal of this study is to solve these problems and develop a single network that provides consistent 3D reconstruction of all humans in a scene. Integrating a human body model based on the SMPL parametric system into a top-down framework became an important choice. Through this, two types of collision loss based on distance field and loss that considers depth order were introduced. The first loss prevents overlap between reconstructed people, and the second loss adjusts the depth ordering of people to render occlusion inference and annotated instance segmentation consistently. This method allows depth information to be provided to the network without explicit 3D annotation of the image. Experimental results show that this study's methodology performs better than existing methods on standard 3D pose benchmarks, and the proposed losses enable more consistent reconstruction from natural images.

Region-based Building Extraction of High Resolution Satellite Images Using Color Invariant Features (색상 불변 특징을 이용한 고해상도 위성영상의 영역기반 건물 추출)

  • Ko, A-Reum;Byun, Young-Gi;Park, Woo-Jin;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.75-87
    • /
    • 2011
  • This paper presents a method for region-based building extraction from high resolution satellite images(HRSI) using integrated information of spectral and color invariant features without user intervention such as selecting training data sets. The purpose of this study is also to evaluate the effectiveness of the proposed method by applying to IKONOS and QuickBird images. Firstly, the image is segmented by the MSRG method. The vegetation and shadow regions are automatically detected and masked to facilitate the building extraction. Secondly, the region merging is performed for the masked image, which the integrated information of the spectral and color invariant features is used. Finally, the building regions are extracted using the shape feature for the merged regions. The boundaries of the extracted buildings are simplified using the generalization techniques to improve the completeness of the building extraction. The experimental results showed more than 80% accuracy for two study areas and the visually satisfactory results obtained. In conclusion, the proposed method has shown great potential for the building extraction from HRSI.

Extracting curved text lines using the chain composition and the expanded grouping method (체인 정합과 확장된 그룹핑 방법을 사용한 곡선형 텍스트 라인 추출)

  • Bai, Nguyen Noi;Yoon, Jin-Seon;Song, Young-Jun;Kim, Nam;Kim, Yong-Gi
    • The KIPS Transactions:PartB
    • /
    • v.14B no.6
    • /
    • pp.453-460
    • /
    • 2007
  • In this paper, we present a method to extract the text lines in poorly structured documents. The text lines may have different orientations, considerably curved shapes, and there are possibly a few wide inter-word gaps in a text line. Those text lines can be found in posters, blocks of addresses, artistic documents. Our method based on the traditional perceptual grouping but we develop novel solutions to overcome the problems of insufficient seed points and vaned orientations un a single line. In this paper, we assume that text lines contained tone connected components, in which each connected components is a set of black pixels within a letter, or some touched letters. In our scheme, the connected components closer than an iteratively incremented threshold will make together a chain. Elongate chains are identified as the seed chains of lines. Then the seed chains are extended to the left and the right regarding the local orientations. The local orientations will be reevaluated at each side of the chains when it is extended. By this process, all text lines are finally constructed. The proposed method is good for extraction of the considerably curved text lines from logos and slogans in our experiment; 98% and 94% for the straight-line extraction and the curved-line extraction, respectively.

Context-Dependent Classification of Multi-Echo MRI Using Bayes Compound Decision Model (Bayes의 복합 의사결정모델을 이용한 다중에코 자기공명영상의 context-dependent 분류)

  • 전준철;권수일
    • Investigative Magnetic Resonance Imaging
    • /
    • v.3 no.2
    • /
    • pp.179-187
    • /
    • 1999
  • Purpose : This paper introduces a computationally inexpensive context-dependent classification of multi-echo MRI with Bayes compound decision model. In order to produce accurate region segmentation especially in homogeneous area and along boundaries of the regions, we propose a classification method that uses contextual information of local enighborhood system in the image. Material and Methods : The performance of the context free classifier over a statistically heterogeneous image can be improved if the local stationary regions in the image are disassociated from each other through the mechanism of the interaction parameters defined at he local neighborhood level. In order to improve the classification accuracy, we use the contextual information which resolves ambiguities in the class assignment of a pattern based on the labels of the neighboring patterns in classifying the image. Since the data immediately surrounding a given pixel is intimately associated with this given pixel., then if the true nature of the surrounding pixel is known this can be used to extract the true nature of the given pixel. The proposed context-dependent compound decision model uses the compound Bayes decision rule with the contextual information. As for the contextual information in the model, the directional transition probabilities estimated from the local neighborhood system are used for the interaction parameters. Results : The context-dependent classification paradigm with compound Bayesian model for multi-echo MR images is developed. Compared to context free classification which does not consider contextual information, context-dependent classifier show improved classification results especially in homogeneous and along boundaries of regions since contextual information is used during the classification. Conclusion : We introduce a new paradigm to classify multi-echo MRI using clustering analysis and Bayesian compound decision model to improve the classification results.

  • PDF

Development of Android Smart Phone App for Analysis of Remote Sensing Images (위성영상정보 분석을 위한 안드로이드 스마트폰 앱 개발)

  • Kang, Sang-Goo;Lee, Ki-Won
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.561-570
    • /
    • 2010
  • The purpose of this study is to develop an Android smartphone app providing analysis capabilities of remote sensing images, by using mobile browsing open sources of gvSIG, open source remote sensing software of OTB and open source DBMS of PostgreSQL. In this app, five kinds of remote sensing algorithms for filtering, segmentation, or classification are implemented, and the processed results are also stored and managed in image database to retrieve. Smartphone users can easily use their functions through graphical user interfaces of app which are internally linked to application server for image analysis processing and external DBMS. As well, a practical tiling method for smartphone environments is implemented to reduce delay time between user's requests and its processing server responses. Till now, most apps for remotely sensed image data sets are mainly concerned to image visualization, distinguished from this approach providing analysis capabilities. As the smartphone apps with remote sensing analysis functions for general users and experts are widely utilizing, remote sensing images are regarded as information resources being capable of producing actual mobile contents, not potential resources. It is expected that this study could trigger off the technological progresses and other unique attempts to develop the variety of smartphone apps for remote sensing images.

Red Tide Detection through Image Fusion of GOCI and Landsat OLI (GOCI와 Landsat OLI 영상 융합을 통한 적조 탐지)

  • Shin, Jisun;Kim, Keunyong;Min, Jee-Eun;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.377-391
    • /
    • 2018
  • In order to efficiently monitor red tide over a wide range, the need for red tide detection using remote sensing is increasing. However, the previous studies focus on the development of red tide detection algorithm for ocean colour sensor. In this study, we propose the use of multi-sensor to improve the inaccuracy for red tide detection and remote sensing data in coastal areas with high turbidity, which are pointed out as limitations of satellite-based red tide monitoring. The study area were selected based on the red tide information provided by National Institute of Fisheries Science, and spatial fusion and spectral-based fusion were attempted using GOCI image as ocean colour sensor and Landsat OLI image as terrestrial sensor. Through spatial fusion of the two images, both the red tide of the coastal area and the outer sea areas, where the quality of Landsat OLI image was low, which were impossible to observe in GOCI images, showed improved detection results. As a result of spectral-based fusion performed by feature-level and rawdata-level, there was no significant difference in red tide distribution patterns derived from the two methods. However, in the feature-level method, the red tide area tends to overestimated as spatial resolution of the image low. As a result of pixel segmentation by linear spectral unmixing method, the difference in the red tide area was found to increase as the number of pixels with low red tide ratio increased. For rawdata-level, Gram-Schmidt sharpening method estimated a somewhat larger area than PC spectral sharpening method, but no significant difference was observed. In this study, it is shown that coastal red tide with high turbidity as well as outer sea areas can be detected through spatial fusion of ocean colour and terrestrial sensor. Also, by presenting various spectral-based fusion methods, more accurate red tide area estimation method is suggested. It is expected that this result will provide more precise detection of red tide around the Korean peninsula and accurate red tide area information needed to determine countermeasure to effectively control red tide.

Evaluation Criteria and Preferred Image of Jeans Products based on Benefit Segmentation (진 제품 구매자의 추구혜택에 따른 평가기준 및 선호 이미지)

  • Park, Na-Ri;Park, Jae-Ok
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.6 s.165
    • /
    • pp.974-984
    • /
    • 2007
  • The purpose of this study was to find differences in evaluation criteria and to find differences in preferred images based on benefits segmented groups of jeans products consumers. Male and female Korean university students participated in the study. Quota sampling method was used to collect the data based on gender and a residential area of the respondents. Data from 492 questionnaires were used in the analysis. Factor analysis, Cronbach's alpha coefficient, cluster analysis, one-way ANOVA, and post-hoc test were conducted. As a result, respondents who seek multi-benefits considered aesthetic criteria(e.g., color, style, design, fit) and quality performance criteria(e.g., durability, ease of care, contractibility, flexibility) more importantly when evaluating and purchasing jeans products. Respondents who seek brand name considered extrinsic criteria(e.g., brand reputation, status symbol, country of origin, fashionability) more importantly than respondents who seek economic efciency. Respondents who seek multi-benefits such as attractiveness, fashion, individuality, and utility tend to prefer all the images: individual image, active image, sexual image, sophisticated image, and simple image when wearing jeans products. Respondents who seek fashion are likely to prefer individual image, and respondents who seek brand name more prefer both individual image and polished image. Mean while, respondents who seek economical efficiency less prefer sexual image and polished image.

Front Classification using Back Propagation Algorithm (오류 역전파 알고리즘을 이용한 영문자의 폰트 분류 방법에 관한 연구)

  • Jung Minchul
    • Journal of Intelligence and Information Systems
    • /
    • v.10 no.2
    • /
    • pp.65-77
    • /
    • 2004
  • This paper presents a priori and the local font classification method. The font classification uses ascenders, descenders, and serifs extracted from a word image. The gradient features of those sub-images are extracted, and used as an input to a neural network classifier to produce font classification results. The font classification determines 2 font styles (upright or slant), 3 font groups (serif sans-serif or typewriter), and 7-font names (Postscript fonts such as Avant Garde, Helvetica, Bookman, New Century Schoolbook, Palatine, Times, and Courier). The proposed a priori and local font classification method allows an OCR system consisting of various font-specific character segmentation tools and various mono-font character recognizers. Experiments have shown font classification accuracies reach high performance levels of about 95.4 percent even with severely touching characters. The technique developed for tile selected 7 fonts in this paper can be applied to any other fonts.

  • PDF

Development of System Configuration and Diagnostic Methods for Tongue Diagnosis Instrument (설진 기기의 시스템 구성 및 진단 방법 개발)

  • Kim, Keun-Ho;Do, Jun-Hyeong;Ryu, Hyun-Hee;Kim, Jong-Yeol
    • Korean Journal of Oriental Medicine
    • /
    • v.14 no.3
    • /
    • pp.89-95
    • /
    • 2008
  • A tongue shows physiological and clinicopathological changes of inner organs. Visual inspection of a tongue is not only convenient but also non-invasive. To develop an automat ic tongue diagnosis system for an objective and standardized diagnosis, the separation of the tongue are a from a facial image and the detection of coatings, spots and cracks are inevitable but difficult since the colors of a tongue, lips, and skin in a mouth as well as those of tongue furs and body are similar. The propose d method includes preprocessing with down-sampling and edge enhancement, over-segmentation, detecting positions with a local minimum over shading from the structure of a tongue, and correcting local minima or detecting edge with color difference. The proposed method produces the region of a segmented tongue, and then decomposes the color components of the region into hue, saturation and brightness, resulting in classifying the regions of tongue furs(coatings) into kinds of coatings and substance and segmenting them. Spots are detected by using local maxima and the variation of saturation, and cracks are searched by using local minima and the directivity of dark areas in brightness. The results illustrate the segmented region with effective information, excluding a non-tongue region and also give us accurate discrimination of coatings and the precise detection of spots and cracks. It can be used to make an objective and standardized diagnosis for an u-Healthcare system as well as a home care system.

  • PDF