• Title/Summary/Keyword: image segmentation method

Search Result 1,342, Processing Time 0.024 seconds

Online Burning Material Pile Detection on Color Clustering and Quaternion based Edge Detection in Boiler

  • Wang, Weixing;Liu, Sheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.190-207
    • /
    • 2015
  • In the combustion engineering, to decrease pollution and increase production efficiency, and to optimally keep solid burning material amount constant in a burner online, it needs a smart method to detect the amount variation of the burning materials in a high temperature environment. This paper presents an online machine vision system for automatically measuring and detecting the burning material amount inside a burner or a boiler. In the camera-protecting box of the system, a sub-system for cooling is constructed by using the cooling water circulation techqique. In addition, the key and intelligent step in the system is to detect the pile profile of the variable burning material, and the algorithm for the pile profile tracing was studied based on the combination of the gey level (color) discontinuity and similarity based image segmentation methods, the discontinuity based sub-algorithm is made on the quaternion convolution, and the similarity based sub-algorithm is designed according to the region growing with multi-scale clustering. The results of the two sub-algoritms are fused to delineate the final pile profile, and the algorithm has been tested and applied in different industrial burners and boilers. The experiements show that the proposed algorithm works satisfactorily.

Vision-Based Mobile Robot Navigation by Robust Path Line Tracking (시각을 이용한 이동 로봇의 강건한 경로선 추종 주행)

  • Son, Min-Hyuk;Do, Yong-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.178-186
    • /
    • 2011
  • Line tracking is a well defined method of mobile robot navigation. It is simple in concept, technically easy to implement, and already employed in many industrial sites. Among several different line tracking methods, magnetic sensing is widely used in practice. In comparison, vision-based tracking is less popular due mainly to its sensitivity to surrounding conditions such as brightness and floor characteristics although vision is the most powerful robotic sensing capability. In this paper, a vision-based robust path line detection technique is proposed for the navigation of a mobile robot assuming uncontrollable surrounding conditions. The technique proposed has four processing steps; color space transformation, pixel-level line sensing, block-level line sensing, and robot navigation control. This technique effectively uses hue and saturation color values in the line sensing so to be insensitive to the brightness variation. Line finding in block-level makes not only the technique immune from the error of line pixel detection but also the robot control easy. The proposed technique was tested with a real mobile robot and proved its effectiveness.

Face Detection in Color images (컬러이미지에서의 얼굴검출)

  • 박동희;박호식;남기환;한준희;나상동;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.236-238
    • /
    • 2003
  • Human face detection is often the first step in applications such as video surveillance, human computer interface, fare recognition, and image database management. We have constructed a simple and fast system to detect frontal human faces in complex environment and different illumination. This paper presents a fast segmentation method to combine neighboring pixels with similar hue. The algorithm constructs eye, mouth, and boundary maps for verifying each fare candidate. We test the system on images in complex environment and with confusing objects. The experiment shows a robust detection result with few false detected fates.

  • PDF

Characteristics of Magnetic Resonance-Based Attenuation Correction Map on Phantom Study in Positron Emission Tomography/Magnetic Resonance Imaging System

  • Hong, Cheolpyo
    • Progress in Medical Physics
    • /
    • v.31 no.4
    • /
    • pp.189-193
    • /
    • 2020
  • An MR-based attenuation correction (MRAC) map plays an important role in quantitative positron emission tomography (PET) image evaluation in PET/magnetic resonance imaging (MRI) systems. However, the MRAC map is affected by the magnetic field inhomogeneity of MRIs. This study aims to evaluate the characteristics of MRAC maps of physical phantoms on PET/MRI images. Phantom measurements were performed using the Siemens Biograph mMR. The modular type physical phantoms that provide assembly versatility for phantom construction were scanned in a four-channel Body Matrix coil. The MRAC map was generated using the two-point Dixon-based segmentation method for whole-body imaging. The modular phantoms were scanned in compact and non-compact assembly configurations. In addition, the phantoms were scanned repeatedly to generate MRAC maps. The acquired MRAC maps show differently assigned values for void areas. An incorrect assignment of a void area was shown on a locally compact space between phantoms. The assigned MRAC values were distorted using a wide field-of-view (FOV). The MRAC values also differed after repeated scans. However, the erroneous MRAC values appeared outside of phantom, except for a large FOV. The MRAC map of the phantom was affected by phantom configuration and the number of scans. A quantitative study using a phantom in a PET/MRI system should be performed after evaluation of the MRAC map characteristics.

Improving the Vehicle Damage Detection Model using YOLOv4 (YOLOv4를 이용한 차량파손 검출 모델 개선)

  • Jeon, Jong Won;Lee, Hyo Seop;Hahn, Hee Il
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.750-755
    • /
    • 2021
  • This paper proposes techniques for detecting the damage status of each part of a vehicle using YOLOv4. The proposed algorithm learns the parts and their damages of the vehicle through YOLOv4, extracts the coordinate information of the detected bounding boxes, and applies the algorithm to determine the relationship between the damage and the vehicle part to derive the damage status for each part. In addition, the technique using VGGNet, the technique using image segmentation and U-Net model, and Weproove.AI deep learning model, etc. are included for objectivity of performance comparison. Through this, the performance of the proposed algorithm is compared and evaluated, and a method to improve the detection model is proposed.

One-step deep learning-based method for pixel-level detection of fine cracks in steel girder images

  • Li, Zhihang;Huang, Mengqi;Ji, Pengxuan;Zhu, Huamei;Zhang, Qianbing
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.153-166
    • /
    • 2022
  • Identifying fine cracks in steel bridge facilities is a challenging task of structural health monitoring (SHM). This study proposed an end-to-end crack image segmentation framework based on a one-step Convolutional Neural Network (CNN) for pixel-level object recognition with high accuracy. To particularly address the challenges arising from small object detection in complex background, efforts were made in loss function selection aiming at sample imbalance and module modification in order to improve the generalization ability on complicated images. Specifically, loss functions were compared among alternatives including the Binary Cross Entropy (BCE), Focal, Tversky and Dice loss, with the last three specialized for biased sample distribution. Structural modifications with dilated convolution, Spatial Pyramid Pooling (SPP) and Feature Pyramid Network (FPN) were also performed to form a new backbone termed CrackDet. Models of various loss functions and feature extraction modules were trained on crack images and tested on full-scale images collected on steel box girders. The CNN model incorporated the classic U-Net as its backbone, and Dice loss as its loss function achieved the highest mean Intersection-over-Union (mIoU) of 0.7571 on full-scale pictures. In contrast, the best performance on cropped crack images was achieved by integrating CrackDet with Dice loss at a mIoU of 0.7670.

Preliminary Study for Image-Based Measurement Model in a Construction Site (이미지 기반 건설현장 수치 측정 모델 기초연구)

  • Yoon, Sebeen;Kang, Mingyun;Kim, Chang-Won;Lim, Hyunsu;Yoo, Wi Sung;Kim, Taehoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.287-288
    • /
    • 2023
  • The inspection work at construction sites is one of the important supervisory tasks, which involves verifying that the building is being constructed by the numerical values specified in the design drawings. The conventional measuring method for inspection involves using tools or equipment such as rulers directly by the personnel at the site, and it is usually confirmed by vision. Therefore, this study proposes an model to measure numerical values on images of the construction site. Through the case study to measure the installation interval of jack supports, the proposed algorithm was verified the effiect and validity. The results of this study suggest that it can support inspection work even in the office, which may have been overlooked by on-site inspectors, and contribute to the digitization of inspection work at construction sites.

  • PDF

Object Extraction Technique using Extension Search Algorithm based on Bidirectional Stereo Matching (양방향 스테레오 정합 기반 확장탐색 알고리즘을 이용한 물체추출 기법)

  • Choi, Young-Seok;Kim, Seung-Geun;Kang, Hyun-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.2
    • /
    • pp.1-9
    • /
    • 2008
  • In this paper, to extract object regions in stereo image, we propose an enhanced algorithm that extracts objects combining both of brightness information and disparity information. The approach that extracts objects using both has been studied by Ping and Chaohui. In their algorithm, the segmentation for an input image is carried out using the brightness, and integration of segmented regions in consideration of disparity information within the previously segmented regions. In the regions where the brightness values between object regions and background regions are similar, however, the segmented regions probably include both of object regions and background regions. It may cause incorrect object extraction in the merging process executed in the unit of the segmented region. To solve this problem, in proposed method, we adopt the merging process which is performed in pixel unit. In addition, we perform the bi-directional stereo matching process to enhance reliability of the disparity information and supplement the disparity information resulted from a single directional matching process. Further searching for disparity is decided by edge information of the input image. The proposed method gives good performance in the object extraction since we find the disparity information that is not extracted in the traditional methods. Finally, we evaluate our method by experiments for the pictures acquired from a real stereoscopic camera.

A User Adaptation Method for Hand Shape Recognition Using Wrist-Mounted Camera (손목 부착형 카메라를 이용한 손 모양 인식에서의 사용자 적응 방법)

  • Park, Hyun;Shi, Hyo-Seok;Kim, Heon-Hui;Park, Kwang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.6
    • /
    • pp.805-814
    • /
    • 2013
  • This paper proposes a robust hand segmentation method using view-invariant characteristic of a wrist-mounted camera, and deals with a hand shape recognition system based on segmented hand information. We actively utilize the advantage of the proposed camera device that provides view-invariant images physically, and segment hand region using a Bayesian rule based on adaptive histograms. We construct HSV histograms from RGB histograms, and update HSV histograms using hand region information from a current image. We also propose a user adaptation method by which hand models gradually approach user-dependent models from user-independent models as the user uses the system. The proposed method was evaluated using 16 Korean manual alphabet, and we obtained increases of 27.91% in recognition success rate.

A semi-automated method for integrating textural and material data into as-built BIM using TIS

  • Zabin, Asem;Khalil, Baha;Ali, Tarig;Abdalla, Jamal A.;Elaksher, Ahmed
    • Advances in Computational Design
    • /
    • v.5 no.2
    • /
    • pp.127-146
    • /
    • 2020
  • Building Information Modeling (BIM) is increasingly used throughout the facility's life cycle for various applications, such as design, construction, facility management, and maintenance. For existing buildings, the geometry of as-built BIM is often constructed using dense, three dimensional (3D) point clouds data obtained with laser scanners. Traditionally, as-built BIM systems do not contain the material and textural information of the buildings' elements. This paper presents a semi-automatic method for generation of material and texture rich as-built BIM. The method captures and integrates material and textural information of building elements into as-built BIM using thermal infrared sensing (TIS). The proposed method uses TIS to capture thermal images of the interior walls of an existing building. These images are then processed to extract the interior walls using a segmentation algorithm. The digital numbers in the resulted images are then transformed into radiance values that represent the emitted thermal infrared radiation. Machine learning techniques are then applied to build a correlation between the radiance values and the material type in each image. The radiance values were used to extract textural information from the images. The extracted textural and material information are then robustly integrated into the as-built BIM providing the data needed for the assessment of building conditions in general including energy efficiency, among others.