• Title/Summary/Keyword: image segmentation method

Search Result 1,342, Processing Time 0.024 seconds

Image Segmentation Using Hierarchical Meshes (계층적인 메쉬 구조를 이용한 영상분할 방법)

  • 임동근;호요성
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.11b
    • /
    • pp.9-14
    • /
    • 1999
  • The object boundary of an image plays an important role for image interpretation. In this paper, we introduce a concept of hierarchical mesh-based image segmentation for finding object boundaries. In each hierarchical layer, we employ neighborhood searching and boundary tracking methods to refine the initial boundary estimate. We also apply a local region growing method to define closed contours. Experimental results indicate that reliable segmentation of objects can be accomplished by the pro-posed tow complexity technique.

  • PDF

Smartphone Based Retouching Method for Watercolor Painting Effect Using Mean Shift Segmentation (Mean Shift Segmentation을 이용한 스마트폰 기반의 수채화 효과 변환 기법)

  • Lee, Sang-Geol;Kim, Cheol-Ki;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.206-208
    • /
    • 2010
  • We propose a retouching method that converts a photography taken by smartphone to a watercolor painting image using bilateral filtering and mean shift segmentation which are mostly used in image processing. The first step is to convert an input image to fit the screen resolution of smartphone. And next step is to weaken high frequency components of the image, while preserving the edge of image using the bilateral filtering. And after that we perform mean shift segmentation from the bilateral filtered image. We apply parameters of mean shift segmentation considering the processing speed of smartphone. Experimental result shows that our method can be applied to various types of image and bring better result.

  • PDF

Retouching Method for Watercolor Painting Effect Using Mean Shift Segmentation (Mean Shift Segmentation을 이용한 수채화 효과 생성 기법)

  • Lee, Sang-Geol;Kim, Cheol-Ki;Cha, Eui-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.9
    • /
    • pp.25-33
    • /
    • 2010
  • We propose a retouching method that converts a general photography to a watercolor painting image using bilateral filtering and mean shift segmentation which are mostly used in image processing. The first step is to weaken high frequency components of the image, while preserving the edge of image using the bilateral filtering. And after that we perform DoG(Difference of Gradient) edge extraction and mean shift segmentation respectively from the bilateral filtered image. The DoG edge extraction is performed using luminance component of the image whose RGB color space is transformed into CIELAB space. Experimental result shows that our method can be applied to various types of image and bring better result, especially against the photo taken in daylight.

Quartile Deviation Based Quadtree Segmentation with Efficience Against Impulsive Noise (충격성 잡음에 효과적인 사분위편차 기반 쿼드트리 영역분할)

  • Shik Koh Sung;Ku Dae Sung;Choh Hyun Yong;Kim Chung Hwa
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.2 s.302
    • /
    • pp.1-8
    • /
    • 2005
  • There are many image segmentation methods having bon published as the results of research so far, however these are for the noise images which can process an image under the general white noise environments. Therefore, these methods has the disadvantages because it is difficult to extract only the accurate parameters, which can distinguish between image and impulsive noise, from image with impulsive noises. So it has a problem about the potential decreasing of the performance according to the impulsive noise for all applications using the present quadtree segmentation. In this paper, we propose new quadtree segmentation using quartile deviation which can extract effectively the image information parameters from a noise image. Therefore our method can apply for various image processing fields because it has a advantage to distinguish an image information from noise image. As the result of simulation, we confirm that the proposed quadtree segmentation is more efficient than the present method when tested on impulsive noise image.

Segmentation-based Wavelet Coding Method for MR Image (MR 영상의 영역분할기반 웨이블렛 부호화방법)

  • Moon, N.S.;Lee, S.J.;Song, J.S.;Kim, J.H.;Lee, C.W.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.95-100
    • /
    • 1997
  • In this paper, we propose a coding method to improve compression efficiency for MR image. This can be achieved by combining coding and segmentation scheme which removes noisy background region, which is meaningless for diagnosis, in MR image. The wavelet coder encodes only diagnostically significant foreground regions refering to segmentation map. Our proposed algorithm provides about 15% of bitrate reduction when compared with the same coder which is not combined with segmentation scheme. And the proposed scheme shows better reconstructed image Qualify than JPEG at the same compression ratio.

  • PDF

Segmention-Based Residual Image Coding Using Classified Vectior Quantizer (분할기반 잉여신호의 CVQ 영상 부호화)

  • 김남철;김종우;홍원학;석민수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.1
    • /
    • pp.63-71
    • /
    • 1993
  • An efficient RVQ image coding method is proposed using the segmentation-based coding and CVQ techniques. In the proposed method the residual image, the difference between an original image and the synthesized one obtained from the segmentation-based coding, is first dividel into $\times$4 subblocks. They are then individually coded in the spatial domain using a simple CVQ. Experimental results show that the proposed method yields better quality of the reconstructed images in both PSNR and subjective test over the basic VQ and SMVQ.

  • PDF

A Method of Color Image Segmentation Based on DBSCAN(Density Based Spatial Clustering of Applications with Noise) Using Compactness of Superpixels and Texture Information (슈퍼픽셀의 밀집도 및 텍스처정보를 이용한 DBSCAN기반 칼라영상분할)

  • Lee, Jeonghwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.4
    • /
    • pp.89-97
    • /
    • 2015
  • In this paper, a method of color image segmentation based on DBSCAN(Density Based Spatial Clustering of Applications with Noise) using compactness of superpixels and texture information is presented. The DBSCAN algorithm can generate clusters in large data sets by looking at the local density of data samples, using only two input parameters which called minimum number of data and distance of neighborhood data. Superpixel algorithms group pixels into perceptually meaningful atomic regions, which can be used to replace the rigid structure of the pixel grid. Each superpixel is consist of pixels with similar features such as luminance, color, textures etc. Superpixels are more efficient than pixels in case of large scale image processing. In this paper, superpixels are generated by SLIC(simple linear iterative clustering) as known popular. Superpixel characteristics are described by compactness, uniformity, boundary precision and recall. The compactness is important features to depict superpixel characteristics. Each superpixel is represented by Lab color spaces, compactness and texture information. DBSCAN clustering method applied to these feature spaces to segment a color image. To evaluate the performance of the proposed method, computer simulation is carried out to several outdoor images. The experimental results show that the proposed algorithm can provide good segmentation results on various images.

A Novel Horizontal Disparity Estimation Algorithm Using Stereoscopic Camera Rig

  • Ramesh, Rohit;Shin, Heung-Sub;Jeong, Shin-Il;Chung, Wan-Young
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.1
    • /
    • pp.83-88
    • /
    • 2011
  • Abstract. Image segmentation is always a challenging task in computer vision as well as in pattern recognition. Nowadays, this method has great importance in the field of stereo vision. The disparity information extracting from the binocular image pairs has essential relevance in the fields like Stereoscopic (3D) Imaging Systems, Virtual Reality and 3D Graphics. The term 'disparity' represents the horizontal shift between left camera image and right camera image. Till now, many methods are proposed to visualize or estimate the disparity. In this paper, we present a new technique to visualize the horizontal disparity between two stereo images based on image segmentation method. The process of comparing left camera image with right camera image is popularly known as 'Stereo-Matching'. This method is used in the field of stereo vision for many years and it has large contribution in generating depth and disparity maps. Correlation based stereo-matching are used most of the times to visualize the disparity. Although, for few stereo image pairs it is easy to estimate the horizontal disparity but in case of some other stereo images it becomes quite difficult to distinguish the disparity. Therefore, in order to visualize the horizontal disparity between any stereo image pairs in more robust way, a novel stereo-matching algorithm is proposed which is named as "Quadtree Segmentation of Pixels Disparity Estimation (QSPDE)".

A Reduction Method of Over-Segmented Regions at Image Segmentation based on Homogeneity Threshold (동질성 문턱 값 기반 영상분할에서 과분할 영역 축소 방법)

  • Han, Gi-Tae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.1
    • /
    • pp.55-68
    • /
    • 2012
  • In this paper, we propose a novel method to solve the problem of excessive segmentation out of the method of segmenting regions from an image using Homogeneity Threshold($H_T$). The algorithm of the previous image segmentation based on $H_T$ was carried out region growth by using only the center pixel of selected window. Therefore it was caused resulting in excessive segmented regions. However, before carrying region growth, the proposed method first of all finds out whether the selected window is homogeneity or not. Subsequently, if the selected window is homogeneity it carries out region growth using the total pixels of selected window. But if the selected window is not homogeneity, it carries out region growth using only the center pixel of selected window. So, the method can reduce remarkably the number of excessive segmented regions of image segmentation based on $H_T$. In order to show the validity of the proposed method, we carried out multiple experiments to compare the proposed method with previous method in same environment and conditions. As the results, the proposed method can reduce the number of segmented regions above 40% and doesn't make any difference in the quality of visual image when we compare with previous method. Especially, when we compare the image united with regions of descending order by size of segmented regions in experimentation with the previous method, even though the united image has regions more than 1,000, we can't recognize what the image means. However, in the proposed method, even though image is united by segmented regions less than 10, we can recognize what the image is. For these reason, we expect that the proposed method will be utilized in various fields, such as the extraction of objects, the retrieval of informations from the image, research for anatomy, biology, image visualization, and animation and so on.

A Study on Image Segmentation Method Based on a Histogram for Small Target Detection (소형 표적 검출을 위한 히스토그램 기반의 영상분할 기법 연구)

  • Yang, Dong Won;Kang, Suk Jong;Yoon, Joo Hong
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.11
    • /
    • pp.1305-1318
    • /
    • 2012
  • Image segmentation is one of the difficult research problems in machine vision and pattern recognition field. A commonly used segmentation method is the Otsu method. It is simpler and easier to implement but it fails if the histogram is unimodal or similar to unimodal. And if some target area is smaller than background object, then its histogram has the distribution close to unimodal. In this paper, we proposed an improved image segmentation method based on 1D Otsu method for a small target detection. To overcome drawbacks by unimodal histogram effect, we depressed the background histogram using a logarithm function. And to improve a signal to noise ratio, we used a local average value by the neighbor window for thresholding using 1D Otsu method. The experimental results show that our proposed algorithm performs better segmentation result than a traditional 1D Otsu method, and needs much less computational time than that of the 2D Otsu method.