• Title/Summary/Keyword: image entropy

Search Result 349, Processing Time 0.027 seconds

A Novel Image Segmentation Method Based on Improved Intuitionistic Fuzzy C-Means Clustering Algorithm

  • Kong, Jun;Hou, Jian;Jiang, Min;Sun, Jinhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3121-3143
    • /
    • 2019
  • Segmentation plays an important role in the field of image processing and computer vision. Intuitionistic fuzzy C-means (IFCM) clustering algorithm emerged as an effective technique for image segmentation in recent years. However, standard fuzzy C-means (FCM) and IFCM algorithms are sensitive to noise and initial cluster centers, and they ignore the spatial relationship of pixels. In view of these shortcomings, an improved algorithm based on IFCM is proposed in this paper. Firstly, we propose a modified non-membership function to generate intuitionistic fuzzy set and a method of determining initial clustering centers based on grayscale features, they highlight the effect of uncertainty in intuitionistic fuzzy set and improve the robustness to noise. Secondly, an improved nonlinear kernel function is proposed to map data into kernel space to measure the distance between data and the cluster centers more accurately. Thirdly, the local spatial-gray information measure is introduced, which considers membership degree, gray features and spatial position information at the same time. Finally, we propose a new measure of intuitionistic fuzzy entropy, it takes into account fuzziness and intuition of intuitionistic fuzzy set. The experimental results show that compared with other IFCM based algorithms, the proposed algorithm has better segmentation and clustering performance.

SPATIO-SPECTRAL MAXIMUM ENTROPY METHOD: II. SOLAR MICROWAVE IMAGING SPECTROSCOPY

  • Bong, Su-Chan;Lee, Jeong-Woo;Gary Dale E.;Yun Hong-Sik;Chae Jong-Chul
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.4
    • /
    • pp.445-462
    • /
    • 2005
  • In a companion paper, we have presented so-called Spatio-Spectral Maximum Entropy Method (SSMEM) particularly designed for Fourier-Transform imaging over a wide spectral range. The SSMEM allows simultaneous acquisition of both spectral and spatial information and we consider it most suitable for imaging spectroscopy of solar microwave emission. In this paper, we run the SSMEM for a realistic model of solar microwave radiation and a model array resembling the Owens Valley Solar Array in order to identify and resolve possible issues in the application of the SSMEM to solar microwave imaging spectroscopy. We mainly concern ourselves with issues as to how the frequency dependent noise in the data and frequency-dependent variations of source size and background flux will affect the result of imaging spectroscopy under the SSMEM. We also test the capability of the SSMEM against other conventional techniques, CLEAN and MEM.

Thermal Infrared Image Analysis for Breast Cancer Detection

  • Min, Sedong;Heo, Jiyoung;Kong, Youngsun;Nam, Yunyoung;Ley, Preap;Jung, Bong-Keun;Oh, Dongik;Shin, Wonhan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.1134-1147
    • /
    • 2017
  • With the rise in popularity of photographic and video cameras, an increasing number of fields are now using thermal imaging cameras. One such application is in the diagnosis of breast cancer, as thermal imaging provides a low-cost and noninvasive method. Thermal imaging is particularly safe for pregnant women, and those with large, dense, or sensitive breasts. In addition, excessive doses of radiation, which may be used in traditional methods of breast cancer detection, can increase the risk of cancer. This paper presents one method of breast cancer detection. Breast images were taken using a thermal camera, with preliminary experiments conducted on Cambodian women. Then the experimental results were analyzed and compared using Shannon entropy and logistic regression.

Lossless Coding Scheme for Lattice Vector Quantizer Using Signal Set Partitioning Method (Signal Set Partitioning을 이용한 격자 양자화의 비 손실 부호화 기법)

  • Kim, Won-Ha
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.38 no.6
    • /
    • pp.93-105
    • /
    • 2001
  • In the lossless step of Lattice Vector Quantization(LVQ), the lattice codewords produced at quantization step are enumerated into radius sequence and index sequence. The radius sequence is run-length coded and then entropy coded, and the index sequence is represented by fixed length binary bits. As bit rate increases, the index bit linearly increases and deteriorates the coding performances. To reduce the index bits across the wide range of bit rates, we developed a novel lattice enumeration algorithm adopting the set partitioning method. The proposed enumeration method shifts down large index values to smaller ones and so reduces the index bits. When the proposed lossless coding scheme is applied to a wavelet based image coding, the proposed scheme achieves more than 10% at bit rates higher than 0.3 bits/pixel over the conventional lossless coding method, and yields more improvement as bit rate becomes higher.

  • PDF

Using CNN- VGG 16 to detect the tennis motion tracking by information entropy and unascertained measurement theory

  • Zhong, Yongfeng;Liang, Xiaojun
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.223-239
    • /
    • 2022
  • Object detection has always been to pursue objects with particular properties or representations and to predict details on objects including the positions, sizes and angle of rotation in the current picture. This was a very important subject of computer vision science. While vision-based object tracking strategies for the analysis of competitive videos have been developed, it is still difficult to accurately identify and position a speedy small ball. In this study, deep learning (DP) network was developed to face these obstacles in the study of tennis motion tracking from a complex perspective to understand the performance of athletes. This research has used CNN-VGG 16 to tracking the tennis ball from broadcasting videos while their images are distorted, thin and often invisible not only to identify the image of the ball from a single frame, but also to learn patterns from consecutive frames, then VGG 16 takes images with 640 to 360 sizes to locate the ball and obtain high accuracy in public videos. VGG 16 tests 99.6%, 96.63%, and 99.5%, respectively, of accuracy. In order to avoid overfitting, 9 additional videos and a subset of the previous dataset are partly labelled for the 10-fold cross-validation. The results show that CNN-VGG 16 outperforms the standard approach by a wide margin and provides excellent ball tracking performance.

A Study on the Mean Flow Velocity Distribution of Jeju Gangjung-Stream using ADCP (ADCP를 활용한 제주 강정천의 평균유속 분포 추정)

  • Yang, Se-Chang;Kim, Yong-Seok;Yang, Sung-Kee;Kang, Myung-Soo;Kang, Bo-Seong
    • Journal of Environmental Science International
    • /
    • v.26 no.9
    • /
    • pp.999-1011
    • /
    • 2017
  • In this study, the Chiu-2D velocity-flow rate distribution based on theoretical background of the entropy probability method was applied to actual ADCP measurement data of Gangjung Stream in Jeju from July 2011 to June 2015 to predict the parameter that take part in velocity distribution of the stream. In addition, surface velocity measured by SIV (Surface Image Velocimeter) was applied to the predicted parameter to calculate discharge. Calculated discharge was compared with observed discharge of ADCP observed during the same time to analyze propriety and applicability of depth of water velocity average conversion factor. To check applicability of the predicted stream parameter, surface velocity and discharge were calculated using SIV and compared with velocity and flow based on ADCP. Discharge calculated by applying velocity factor of SIV to the Chiu-2D velocity-flow rate distribution and discharge based on depth of water velocity average conversion factor of 0.85 were $0.7171m^3/sec$ and $0.5758m^3/sec$, respectively. Their error rates compared to average ADCP discharge of $0.6664m^3/sec$ were respectively 7.63% and 13.64%. Discharge based on the Chiu-2D velocity-flow distribution showed lower error rate compared to discharge based on depth of water velocity average conversion factor of 0.85.

Hardware Implementation of EBCOT TIER-1 for JPEG2000 Encoder (JPEG2000 Encoder를 위한 EBCOT Tier-1의 하드웨어 구현)

  • Lee, Sung-Mok;Jang, Won-Woo;Cho, Sung-Dae;Kang, Bong-Soon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.2
    • /
    • pp.125-131
    • /
    • 2010
  • This paper presents the implementation of a EBCOT TIER-1 for JPEG2000 Encoder. JPEG2000 is new standard for the compression of still image for overcome the artifact of JPEG. JPEG2000 standard is based on DWT(Discrete Wavelet Transform) and EBCOT Entropy coding technology. EBCOT(Embedded block coding with optimized truncation) is the most important technology that is compressed the image data in the JPEG2000. However, EBCOT has the artifact because the operations are bit-level processing and occupy the harf of the computation time of JPEG2000 Compression. Therefore, in this paper, we present modified context extraction method for enhance EBCOT computational efficiency and implemented MQ- Coder as arithmetic coder. The proposed system is implemented by Verilog-HDL, under the condition of TSMC 0.25um ASIC library, gate counts are 30,511EA and satisfied the 50MHz operating condition.

A Performance Improvement of GLCM Based on Nonuniform Quantization Method (비균일 양자화 기법에 기반을 둔 GLCM의 성능개선)

  • Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.133-138
    • /
    • 2015
  • This paper presents a performance improvement of gray level co-occurrence matrix(GLCM) based on the nonuniform quantization, which is generally used to analyze the texture of images. The nonuniform quantization is given by Lloyd algorithm of recursive technique by minimizing the mean square error. The nonlinear intensity levels by performing nonuniformly the quantization of image have been used to decrease the dimension of GLCM, that is applied to reduce the computation loads as a results of generating the GLCM and calculating the texture parameters by using GLCM. The proposed method has been applied to 30 images of $120{\times}120$ pixels with 256-gray level for analyzing the texture by calculating the 6 parameters, such as angular second moment, contrast, variance, entropy, correlation, inverse difference moment. The experimental results show that the proposed method has a superior computation time and memory to the conventional 256-level GLCM method without performing the quantization. Especially, 16-gray level by using the nonuniform quantization has the superior performance for analyzing textures to another levels of 48, 32, 12, and 8 levels.

Region-based Multi-level Thresholding for Color Image Segmentation (영역 기반의 Multi-level Thresholding에 의한 컬러 영상 분할)

  • Oh, Jun-Taek;Kim, Wook-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.6 s.312
    • /
    • pp.20-27
    • /
    • 2006
  • Multi-level thresholding is a method that is widely used in image segmentation. However most of the existing methods are not suited to be directly used in applicable fields and moreover expanded until a step of image segmentation. This paper proposes region-based multi-level thresholding as an image segmentation method. At first we classify pixels of each color channel to two clusters by using EWFCM(Entropy-based Weighted Fuzzy C-Means) algorithm that is an improved FCM algorithm with spatial information between pixels. To obtain better segmentation results, a reduction of clusters is then performed by a region-based reclassification step based on a similarity between regions existing in a cluster and the other clusters. The clusters are created using the classification information of pixels according to color channel. We finally perform a region merging by Bayesian algorithm based on Kullback-Leibler distance between a region and the neighboring regions as a post-processing method as many regions still exist in image. Experiments show that region-based multi-level thresholding is superior to cluster-, pixel-based multi-level thresholding, and the existing mettled. And much better segmentation results are obtained by the post-processing method.

Image Analysis using Transform domain-based Human Visual Parameter (변환영역 기반의 시각특성 파라미터를 이용한 영상 분석)

  • Kim, Yoon-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.4
    • /
    • pp.378-383
    • /
    • 2008
  • This paper presents a method of image analysis based on discrete cosine transform (DCT) and fuzzy inference(Fl). It concentrated not only on the design of fuzzy inference algorithm but also on incorporating human visual parameter(HVP) into transform coefficients. In the first, HVP such as entropy, texture degree are calculated from the coefficients matrix of DCT. Secondly, using these parameters, fuzzy input variables are generated. Mamdani's operator as well as ${\alpha}$-cut function are involved to simulate the proposed approach, and consequently, experimental results are presented to testify the performance and applicability of the proposed scheme.

  • PDF