KSII Transactions on Internet and Information Systems (TIIS)
/
제13권6호
/
pp.3121-3143
/
2019
Segmentation plays an important role in the field of image processing and computer vision. Intuitionistic fuzzy C-means (IFCM) clustering algorithm emerged as an effective technique for image segmentation in recent years. However, standard fuzzy C-means (FCM) and IFCM algorithms are sensitive to noise and initial cluster centers, and they ignore the spatial relationship of pixels. In view of these shortcomings, an improved algorithm based on IFCM is proposed in this paper. Firstly, we propose a modified non-membership function to generate intuitionistic fuzzy set and a method of determining initial clustering centers based on grayscale features, they highlight the effect of uncertainty in intuitionistic fuzzy set and improve the robustness to noise. Secondly, an improved nonlinear kernel function is proposed to map data into kernel space to measure the distance between data and the cluster centers more accurately. Thirdly, the local spatial-gray information measure is introduced, which considers membership degree, gray features and spatial position information at the same time. Finally, we propose a new measure of intuitionistic fuzzy entropy, it takes into account fuzziness and intuition of intuitionistic fuzzy set. The experimental results show that compared with other IFCM based algorithms, the proposed algorithm has better segmentation and clustering performance.
In a companion paper, we have presented so-called Spatio-Spectral Maximum Entropy Method (SSMEM) particularly designed for Fourier-Transform imaging over a wide spectral range. The SSMEM allows simultaneous acquisition of both spectral and spatial information and we consider it most suitable for imaging spectroscopy of solar microwave emission. In this paper, we run the SSMEM for a realistic model of solar microwave radiation and a model array resembling the Owens Valley Solar Array in order to identify and resolve possible issues in the application of the SSMEM to solar microwave imaging spectroscopy. We mainly concern ourselves with issues as to how the frequency dependent noise in the data and frequency-dependent variations of source size and background flux will affect the result of imaging spectroscopy under the SSMEM. We also test the capability of the SSMEM against other conventional techniques, CLEAN and MEM.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권2호
/
pp.1134-1147
/
2017
With the rise in popularity of photographic and video cameras, an increasing number of fields are now using thermal imaging cameras. One such application is in the diagnosis of breast cancer, as thermal imaging provides a low-cost and noninvasive method. Thermal imaging is particularly safe for pregnant women, and those with large, dense, or sensitive breasts. In addition, excessive doses of radiation, which may be used in traditional methods of breast cancer detection, can increase the risk of cancer. This paper presents one method of breast cancer detection. Breast images were taken using a thermal camera, with preliminary experiments conducted on Cambodian women. Then the experimental results were analyzed and compared using Shannon entropy and logistic regression.
격자 벡터 양자화의 비 손실 과정에서는 생성된 코드단어들을 radius 열과 Index 열로 열거한다. radius 열은 run-length 부호화한 한 다음 Entropy 부호화한다. 또한 index 열들은 이진의 고정길이로 표현한다. 비트율이 증가함에 따라 index 비트는 선형적으로 증가하여서 부호화 성능을 감소시킨다. 이 논문에서는, 넓은 비트율의 범위에서 index 비트를 줄이기 위해서, set partitioning 방식을 채택한 새로운 열거 알고리즘을 개발하였다. 제안된 열거 방법은 큰 index 값을 작은 값들을 천이 시켜서 index 비트를 줄인다. 제안된 비손실 기법을 웨이블릿 기반의 영상 부호화에 적용시켰을 때, 0.3 bits/pixel 이상의 비트룰에서 기존의 비손실 부호화 방식보다 10%이상의 비트율을 감소시켰다.
Object detection has always been to pursue objects with particular properties or representations and to predict details on objects including the positions, sizes and angle of rotation in the current picture. This was a very important subject of computer vision science. While vision-based object tracking strategies for the analysis of competitive videos have been developed, it is still difficult to accurately identify and position a speedy small ball. In this study, deep learning (DP) network was developed to face these obstacles in the study of tennis motion tracking from a complex perspective to understand the performance of athletes. This research has used CNN-VGG 16 to tracking the tennis ball from broadcasting videos while their images are distorted, thin and often invisible not only to identify the image of the ball from a single frame, but also to learn patterns from consecutive frames, then VGG 16 takes images with 640 to 360 sizes to locate the ball and obtain high accuracy in public videos. VGG 16 tests 99.6%, 96.63%, and 99.5%, respectively, of accuracy. In order to avoid overfitting, 9 additional videos and a subset of the previous dataset are partly labelled for the 10-fold cross-validation. The results show that CNN-VGG 16 outperforms the standard approach by a wide margin and provides excellent ball tracking performance.
In this study, the Chiu-2D velocity-flow rate distribution based on theoretical background of the entropy probability method was applied to actual ADCP measurement data of Gangjung Stream in Jeju from July 2011 to June 2015 to predict the parameter that take part in velocity distribution of the stream. In addition, surface velocity measured by SIV (Surface Image Velocimeter) was applied to the predicted parameter to calculate discharge. Calculated discharge was compared with observed discharge of ADCP observed during the same time to analyze propriety and applicability of depth of water velocity average conversion factor. To check applicability of the predicted stream parameter, surface velocity and discharge were calculated using SIV and compared with velocity and flow based on ADCP. Discharge calculated by applying velocity factor of SIV to the Chiu-2D velocity-flow rate distribution and discharge based on depth of water velocity average conversion factor of 0.85 were $0.7171m^3/sec$ and $0.5758m^3/sec$, respectively. Their error rates compared to average ADCP discharge of $0.6664m^3/sec$ were respectively 7.63% and 13.64%. Discharge based on the Chiu-2D velocity-flow distribution showed lower error rate compared to discharge based on depth of water velocity average conversion factor of 0.85.
본 논문은 JPEG2000 Encoder를 위한 EBCOT Tier-1의 하드웨어 구현에 관한 것이다. 2000년대 초반, JPEG의 단점을 극복하기 위해 차세대 정지영상 압축 표준으로 등장한 것이 JPEG2000이다. JPEG2000 표준은 DWT(Discrete Wavelet Transform)과 EBCOT Entropy coding 기술을 기반으로 하고 있다. 이 중 EBCOT(Embedded block coding with optimized truncation)은 JPEG2000 표준에서 실제 압축을 수행하는 가장 중요한 기술 중 하나이다. 하지만 EBCOT는 Bit-level 처리를 하기 때문에 JPEG2000 압축 과정 중 절반 정도의 연산 시간을 차지하는 단점을 가지고 있다. 그래서 이에 본 논문은 EBCOT 연산의 효율성을 높이기 위해 수정된 Context 추출 방법과 산술 부호화기 MQ- Coder를 하드웨어 구현하였다. 제안된 시스템은 Verilog-HDL로 구현되었으며 TSMC 0.25um ASIC 라이브러리로 합성한 결과, 게이트 카운트는 30,511개로 구현되었으며, 50MHz의 동작 조건을 만족한다.
본 논문에서는 비균일 양자화에 기반을 둔 영상의 질감분석에 널리 이용되고 있는 gray level co-occurrence matrix(GLCM)의 성능개선을 제안하였다. 여기서 비균일 양자화는 평균자승오차의 최소화를 위한 반복계산 기법인 Lloyd 알고리즘을 이용하였다. 이는 영상에서의 비균일 양자화 과정으로 얻어지는 비선형의 명암레벨을 GLCM의 생성에 이용함으로써 행렬의 차원을 감소시켜, GLCM의 생성과 질감특성 파라미터들의 계산에 따른 부하를 줄이기 위함이다. 제안된 기법을 30개의 $120{\times}120$ 픽셀의 256 그레이 레벨을 가진 영상들을 대상으로 적용하여 angular second moment, contrast, variance, entropy, correlation, inverse difference moment 6개의 질감특성 파라미터들을 각각 계산한 실험결과, 양자화를 수행하지 않은 256 레벨 GLCM에 비해 계산시간과 저장 공간에서 개선된 성능이 있음을 확인하였다. 특히 48, 32, 16, 12, 8의 비균일 양자화 레벨 중에서 16일 때 가장 우수한 질감특성분석 성능이 있음을 알 수 있었다.
Multi-level thresholding은 영상 분할 방법 중 하나로 널리 이용되고 있지만 대부분의 기존 논문들은 응용 분야에 직접적으로 이용되기에는 적합하지 않거나 영상 분할 단계까지 확장되지 않고 있다. 본 논문에서는 영상 분할을 위한 multi-level thresholding 방안으로써 영역 단위의 multi-level thresholding을 제안한다. 먼저, 영상의 색상별 성분에 대해서 EWFCM(Entropy-based Weighted Fuzzy C-Means) 알고리즘을 적용하여 2개의 군집으로 분류한 후 코드 영상을 생성한다. EWFCM 알고리즘은 화소들에 대한 공간 정보를 추가한 개선된 FCM 알고리즘으로 영상 내 존재하는 잡음을 제거한다. 그리고 코드 영상에 존재하는 군집의 수를 감소함으로써 좀 더 나은 영상 분할 결과를 얻을 수 있으며 군집의 감소는 하나의 군집내에 존재하는 영역들과 나머지 군집들간의 유사도를 기반으로 영역을 재분류함으로써 처리된다. 그러나 영상에는 여전히 많은 영역들이 존재하기 때문에 이를 해결하기 위한 하나의 후처리 방안으로써 영역간의 Kullback-Leibler 거리값을 기반으로 Bayesian 알고리즘에 의한 영역 합병을 수행한다. 실험 결과 제안한 영역 기반의 multi-level thresholding은 기존 방법이나 화소나 군집 기반의 multi-level thresholding보다 좋은 분할 결과를 보였으며 Bayesian 알고리즘을 이용한 후처리 방안에 의해 좀 더 나은 결과를 보였다.
본 논문에서는 DCT 변환과 퍼지추론을 이용하여 영상을 분석하는 방법을 제안 한 바, 병해충 과실 등의 특성을 분석 할 수 있는 퍼지추론 알고리즘과 변환계수에 시각특성파라미터를 접목하는 방법에 중점을 두었다. 전처리 과정에서 이산코사인 변환계수로부터 엔트로피와 텍스처 등의 시각특징 파라미터들을 구하였고, 이 변수들을 이용하여 퍼지 추론의 입력 변수를 생성 하였다. 맘다니 연산자와 ${\alpha}$-cut 함수를 적용하여 영상 분석을 실험한 결과, 제안한 방법의 응용가능성을 입증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.