• 제목/요약/키워드: image clustering

검색결과 601건 처리시간 0.032초

LoG 윤곽선 검출 기법을 적용한 새로운 미세먼지 측정 방법 설계 (Design of New Fine Dust Measurement Method applying LoG Edge Detection Technique)

  • 장택진;인치호
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권5호
    • /
    • pp.69-73
    • /
    • 2022
  • 본 논문에서는 LoG(Laplacian of Gaussian) 기반의 윤곽선 검출 기법을 통한 새로운 미세먼지 측정 방법을 제안한다. 미세먼지 측정을 위하여 CCTV 기반의 영상 이미지를 수집하고, RoI(Region of Interest)를 통해 이미지 범위를 지정한다. 지정된 영역에 GMM(Gaussian Mixture Model)을 적용하여 군집화 후, LoG 알고리즘을 통해 윤곽선을 검출하고 검출된 윤곽선 강도를 측정한다. 측정된 윤곽선의 강도 데이터를 기반으로 미세먼지의 농도를 결정한다. 본 논문에서 제안하는 알고리즘의 효용성을 입증하기 위하여 본교 연구실 주위에 설치된 CCTV 영상 이미지를 6~7월 한달간 수집하여 적용한 결과, 측정된 결과값은 미세먼지 농도와 범위를 계산하기에 충분함을 본 실험을 통해 입증하였다.

Opcode 빈도수 기반 악성코드 이미지를 활용한 CNN 기반 악성코드 탐지 기법 (CNN-Based Malware Detection Using Opcode Frequency-Based Image)

  • 고석민;양재혁;최원준;김태근
    • 정보보호학회논문지
    • /
    • 제32권5호
    • /
    • pp.933-943
    • /
    • 2022
  • 인터넷이 발달하고 컴퓨터 이용률이 높아짐에 따라 악성코드로 인한 위협 또한 함께 증가하고 있다. 매년 발견되는 악성코드의 수는 급격히 증가하여 자동으로 대량의 악성코드를 분석하기 위한 시스템이 필요한 상황이다. 본 논문에서는 딥러닝 알고리즘을 활용한 악성코드 자동 분석 기법을 소개한다. CNN(Convolutional Neural Network)라는 이미지 분류에 활용도가 높은 알고리즘을 이용하여 악성코드의 특징을 이미지화한 데이터를 분석한다. 제안하는 방법은 악성코드의 Semantic한 정보를 탐지에 활용하기 위하여 단순 바이너리 바이트를 기반으로 생성한 이미지가 아닌, 바이너리의 명령어 빈도수를 기반으로 생성한 이미지를 CNN으로 분석한다. 악성코드 10,000개 정상코드 10,000개로 구성된 대량의 데이터 셋을 활용하여 탐지 성능을 확인한 결과, 제안하는 방법은 91%의 정확도로 악성코드를 탐지할 수 있음이 확인되었다.

Automated Water Surface Extraction in Satellite Images Using a Comprehensive Water Database Collection and Water Index Analysis

  • Anisa Nur Utami;Taejung Kim
    • 대한원격탐사학회지
    • /
    • 제39권4호
    • /
    • pp.425-440
    • /
    • 2023
  • Monitoring water surface has become one of the most prominent areas of research in addressing environmental challenges.Accurate and automated detection of watersurface in remote sensing imagesis crucial for disaster prevention, urban planning, and water resource management, particularly for a country where water plays a vital role in human life. However, achieving precise detection poses challenges. Previous studies have explored different approaches,such as analyzing water indexes, like normalized difference water index (NDWI) derived from satellite imagery's visible or infrared bands and using k-means clustering analysis to identify land cover patterns and segment regions based on similar attributes. Nonetheless, challenges persist, notably distinguishing between waterspectralsignatures and cloud shadow or terrain shadow. In thisstudy, our objective is to enhance the precision of water surface detection by constructing a comprehensive water database (DB) using existing digital and land cover maps. This database serves as an initial assumption for automated water index analysis. We utilized 1:5,000 and 1:25,000 digital maps of Korea to extract water surface, specifically rivers, lakes, and reservoirs. Additionally, the 1:50,000 and 1:5,000 land cover maps of Korea aided in the extraction process. Our research demonstrates the effectiveness of utilizing a water DB product as our first approach for efficient water surface extraction from satellite images, complemented by our second and third approachesinvolving NDWI analysis and k-means analysis. The image segmentation and binary mask methods were employed for image analysis during the water extraction process. To evaluate the accuracy of our approach, we conducted two assessments using reference and ground truth data that we made during this research. Visual interpretation involved comparing our results with the global surface water (GSW) mask 60 m resolution, revealing significant improvements in quality and resolution. Additionally, accuracy assessment measures, including an overall accuracy of 90% and kappa values exceeding 0.8, further support the efficacy of our methodology. In conclusion, thisstudy'sresults demonstrate enhanced extraction quality and resolution. Through comprehensive assessment, our approach proves effective in achieving high accuracy in delineating watersurfaces from satellite images.

${H_2}^{15}O$ PET을 이용한 뇌혈류 파라메트릭 영상 구성을 위한 알고리즘 비교 (Comparison of Algorithms for Generating Parametric Image of Cerebral Blood Flow Using ${H_2}^{15}O$ PET Positron Emission Tomography)

  • 이재성;이동수;박광석;정준기;이명철
    • 대한핵의학회지
    • /
    • 제37권5호
    • /
    • pp.288-300
    • /
    • 2003
  • 목적: ${H_2}^{15}O$ PET의 정량화를 위하여 1-조직 구획모델이 쓰이며, 뇌혈류와 조직/혈액 분배계수를 구하기 위하여 nonlinear least squares (NLS) 방법이 사용되나 계산 시간이 긴 등의 문제로 파라미터를 각화소마다 구해야 하는 파라메트릭 영상 구성에는 적합하지 않다. 이 연구에서는 이와 같은 NLS 문제점을 극복하여 파라메트릭 영상을 빠르게 구성하기 위하여 제안된 파라미터 추정 알고리즘들을 구현하고, 이 방법들의 통계적 신뢰도와 계산의 효율성을 비교하였다. 대상 및 방법: 이 연구에서 이용한 방법들은 linear least squares (LLS), linear weighted least squares (LWLS), linear generalized least squares (GLS), linear generalized weighted least squares (GWLS), weighted integration (WI), 그리고 model-based clustering method (CAKS)이다. 노이즈 정도에 따른 각 파라메트릭 영상법의 정확성 및 통계적 신뢰성을 알아보기 위하여 Zubal 뇌모형(brain phantom)으로부터 동적 PET 영상을 모사하고 포아송노이즈를 더한 후 각 파라메트릭 영상 구성 방법을 적용하였다. 또한 정상인 16명에 대하여 얻은 실제 자료에 대하여 이 방법들을 적용하고 결과를 비교하였다. 결과: 뇌혈류와 분배계수에 대한 평균 오차는 방법에 따라 크게 다르지 않았으며 모든 방법이 뇌혈류 및 분배계수 추정에 있어 무시할 만한 바이어스를 보였다. 파라메트릭 영상의 정성적 특성 또한 유사하였으나 CAKS 방법의 계산 속도가 월등하여 NLS 방법의 약 1/500, LLS 방법의 약 1/25의 계산시간을 보였다. 결론: 뇌혈류 파라메트릭 영상 구성을 위한 빠른 파라미터 추정 알고리즘들 중에 보다 개선되어 제안된 LWS, GLS, GLWS, CAKS 방법들이 단순하고 빠른 LLS, WI 방법들에 비하여 통계적 신뢰성을 크게 향상시키지는 못하나 CAKS 방법은 계산 시간을 유의하게 단축시키므로 가장 적합한 파라메트릭 영상 구성방법이라 할 수 있을 것이다.

지능형 검색엔진을 위한 색상 질의 처리 방안 (Color-related Query Processing for Intelligent E-Commerce Search)

  • 홍정아;구교정;차지원;서아정;여운영;김종우
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.109-125
    • /
    • 2019
  • 지능형 전자상거래 검색 엔진에 대한 관심이 커지면서, 검색 상품의 특징을 지능적으로 추출하고 활용하기 위한 연구들이 수행되고 있다. 특히 전자상거래 지능형 검색 엔진에서 상품을 검색 할 때, 제품의 색상은 상품을 묘사하는 중요한 특징 중에 하나이다. 따라서 사용자의 질의에 정확한 응답을 위해서는 사용자가 검색하려는 색상과 그 색상의 동의어 및 유의어에 대한 처리가 필요하다. 기존의 연구들은 색상 특징에 대한 동의어 처리를 주로 사전 방식으로 다뤄왔다. 하지만 이러한 사전방식으로는 사전에 등록되지 않은 색상 용어가 질의에 포함된 경우 처리하지 못하는 한계점을 가지고 있다. 본 연구에서는 기존에 사용하던 방식의 한계점을 극복하기 위하여, 실시간으로 인터넷 검색 엔진을 통해 해당 색상의 RGB 값을 추출한 후 추출된 색상정보를 기반으로 유사한 색상명들을 출력하는 모델을 제안한다. 본 모델은 우선적으로 기본적인 색상 검색을 위해 671개의 색상명과 각 RGB값이 저장된 색상 사전을 구축하였다. 본 연구에서 제시한 모델은 특정 색상을 검색하는 것으로 시작하며, 검색된 색상이 색상 사전 내 존재하는 지 유무를 확인한다. 사전 내에 검색한 색상이 존재한다면, 해당 색상의 RGB 값이 기준 값으로 사용된다. 만일 색상사전 내에 존재하지 않는다면, Google 이미지 검색 결과를 크롤링하여 각 이미지의 특정 영역 내 RGB값들을 군집화하여 구한 평균 RGB값을 검색한 색상의 기준 값으로 한다. 기준 RGB값을 앞서 구축한 색상 사전 내의 모든 색상의 RGB 값들과 비교하여 각 R, G, B 값에 있어서 ${\pm}50$ 내의 색상 목록을 정렬하고, RGB값 간의 유클리디안 거리 유사도를 활용하여 최종적으로 유사한 색 상명들을 출력한다. 제안 방안의 유용성을 평가하기 위해 실험을 진행하였다. 피설문자들이 생각하는 300 개의 색상 이름과 해당 색상 값을 얻어, 본 연구에서 제안한 방안을 포함한 총 네가지 방법을 통해 얻은 RGB 값들과 피설문자가 지정한 RGB값에 대한 비교를 진행했다. 인간의 눈을 반영하는 측정 기준인 CIELAB의 유클리드안거리는 평균 13.85로 색상사전만을 활용한 방안의 30.88, 한글 동의어사전 사이트인 워드넷을 추가로 활용한 방안의 30.38에 비해 비교적 낮은 색상 간의 거리 값을 보였다. 연구에서 제시하는 방안에서 군집화 과정을 제외한 방안의 색 차는 13.88로 군집화 과정이 색 차를 줄여준다는 것을 확인할 수 있었다. 본 연구에서는 기존 동의어 처리 방식인 사전 방식이 지닌 한계에서 벗어나기 위해, 사전 방식에 새로운 색상명에 대한 실시간 동의어 처리 방식을 결합한 RGB값 기반의 새로운 색상 동의어 처리 방안을 제안한다. 본 연구의 결과를 활용하여 전자상거래 검색 시스템의 지능화에 크게 기여할 수 있을 것이다.

Bayes의 복합 의사결정모델을 이용한 다중에코 자기공명영상의 context-dependent 분류 (Context-Dependent Classification of Multi-Echo MRI Using Bayes Compound Decision Model)

  • 전준철;권수일
    • Investigative Magnetic Resonance Imaging
    • /
    • 제3권2호
    • /
    • pp.179-187
    • /
    • 1999
  • 목적 : 본 논문은 Bayes의 복합 의사결정모델을 이용한 효과적인 다중에코 자기공명영상의 분류방법을 소개한다. 동질성을 갖는 영역 혹은 경계선부위 등 영역을 명확히 분할하기 위하여 영상 내 국소 부위 이웃시스댐상의 주변정보(contextual information)를 이용한 분류 방법을 제시한다. 대상 및 방법 : 통계학적으로이질적 성분들로 구성된 영상을 대상으로 한 주변정보를 이용한 분류결과는 영상내의 국소적으로 정적인 영역들을이웃화소시스탬 내에서 정의되는 상호작용 인자의 메커니즘에 의해 분리함으로서 개선시킬 수 있다. 영상의 분류과정에서 분류결과의 정확도를 향상시키기 위하여 분류대상화소의 주변화소에 대한 분류패턴을 이용한다면 일반적으로 발생하는 분류의 모호성을 제거한다. 그러한 이유는 특정 화소와 인접한 주변의 데이터는 본질적으로 특정 화소와 상관관계를 내재하고 있으며, 만일 주변데이터의 특성을 파악할수 있다면, 대상화소의 성질을 결정하는데 도움을 얻을 수 있다. 본 논문에서는 분류 대상화소의 주변정보와 Bayes의 복합 의사결정모델을 이용한 context-dependent 분류 방법을 제시한다. 이 모델에서 주변 정보는 국소 부위 이웃시스댐으로부터 전이확률(tran­s sition probability)을 추출하여 화소간의 상관관계의 강도를 결정하는 상호인자 값으로 사용한다. 결과 : 본논문에서는 다중에코자기공명영상의 분류를 위하여 Bayes의 복합 의사결정모델을 이용한 분류방법을 제안하였다. 주변 데이터를 고려하지 않는 context-free 분류 방법에 비하여 특히 동질성을 강는 영역 혹은 경계선 부위 등에서의 분류결과가 우수하게 나타났으며, 이는 주변정보를이용한 결과이다. 결론 : 본 논문에서는클러스터링 분석과 복합 의사결정 Bayes 모델을 이용하여 다중에코 자기공명영상의 분류 결과를 향상시키기 위한 새로운 방법을 소개하였다.

  • PDF

부분공간과 LVQ 분류기에 기반한 실시간 얼굴 인식 (Real-Time Face Recognition Based on Subspace and LVQ Classifier)

  • 권오륜;민경필;전준철
    • 인터넷정보학회논문지
    • /
    • 제8권3호
    • /
    • pp.19-32
    • /
    • 2007
  • 본 논문에서는 실시간 얼굴인증 시스템의 구축을 위한 LVQ 신경망 기반의 새로운 얼굴 인식 방법을 제안한다. 기존의 연구에서 PCA, LDA 변환이 많이 적용되며 신경망을 결합한 형태가 제안되고 있지만 신경망 학습 시간이 오래 걸리는 단점을 가지고 있다. LVQ 신경망은 학습 시간이 짧고 클래스간의 분리도를 최대화할 수 있는 교사학습방법이다. 따라서, 본 논문에서 제안된 방법은 동영상으로부터 실시간으로 입력되는 얼굴영상을 PCA와 LDA변환을 순차적으로 적용하여 부분공간상의 변환된 특징벡터로부터 LVQ 신경망의 학습을 통하여 얼굴을 인식한다. 외부조명의 영향에 강건한 인식시스템을 구축하기 위하여 얼굴검출 단계에서 검출된 얼굴영역은 밝기값의 최대-최소 정규화 방법에 의해 보정된 정규화 영상을 생성한다. 정규화된 얼굴영상은 PCA와 LDA 변환을 통해 부분공간상의 특징벡터로 변환된다. 변환된 훈련 데이터로부터 LVQ 신경망의 초기 중심 벡터를 결정하고 신경망의 학습률 향상을 위해 K-Means 클러스터링 알고리즘을 적용하며, 초기 중심 벡터를 이용하여 LVQ2 학습 방법에 의해 학습된 중심벡터는 클래스의 대표 벡터가 된다. 결국 각 클래스의 대표 벡터로부터 입력 영상의 특징벡터간의 유클리디언 거리 비교법을 적용하여 얼굴 인식을 수행한다. ORL 데이터베이스를 이용한 정지 영상에 대한 인식과 실시간으로 입력되는 영상에 대한 인식 등 두 가지 형태의 영상을 기반으로 실험한 결과 두 경우에 모두 제안된 방법이 기존의 인식 방법보다 인식률에서 우수함을 입증할 수 있었다.

  • PDF

3차원 형상복원 정보 기반의 검색 자동화를 위한 스테레오 X-선 검색장치에 관한 연구 (The study of the stereo X-ray system for automated X-ray inspection system using 3D-reconstruction shape information)

  • 황영관;이남호
    • 한국정보통신학회논문지
    • /
    • 제18권8호
    • /
    • pp.2043-2050
    • /
    • 2014
  • X-선 탐지장치는 검색 대상물에 대한 단면 정보만을 제공하기 때문에 내용물에 대한 판정의 한계가 있다. 스테레오 X-선 탐지 장치는 검색 대상체에 대한 단면 정보와 논문에서 제안된 볼륨기반의 3차원 형상복원 알고리즘을 통해 3차원 정보를 제공하여 검색효율을 높일 수 있다. 또한, 고속 검색을 위해 자동화 검색에 대한 식별자로 형상복원 결과를 적용하고자 유사한 모형의 15개 샘플에 대한 형상 복원 및 검출율을 분석하였다. 검색대상 모델에 대한 복원 결과는 실측 모델과 비교할 때 각각 폭 (2.56%), 높이 (6.15 %)와 깊이 (7.12 %)의 오차를 보이며 높은 정확도를 나타내었다. 또한 K-Mean 클러스터링 알고리즘을 적용하여 실험한 결과 97 %의 검출 효율이 보였다. 본 논문의 결과는 자동화 시스템을 위한 새로운 검색식별자를 제시하며 추가연구를 통해 검색 시스템의 효율성 향상을 위한 연구를 진행할 것이다.

식생의 분광 반사특성을 이용한 산불 피해지 분석 (Analysis of Forest Fire Damage Areas Using Spectral Reflectance of the Vegetation)

  • 최승필;김동희;건석육태랑
    • 대한공간정보학회지
    • /
    • 제14권2호
    • /
    • pp.89-94
    • /
    • 2006
  • 산림피해는 세계적으로 커다란 이슈가 되고 있으며, 그 중에서도 산불에 의한 피해는 그 자체로서의 피해 뿐 만이 아니라, 홍수 등으로 이어지는 2차 피해로 연결이 된다. 그러나, 산불 발생 당시 접근의 어려움과 상당기간에 걸친 조사기간으로 인하여 산불 피해에 대하여 명확한 분석이 어려운 실정이다. 이러한 어려움을 극복하고자 최근 들어 인공위성 영상 자료를 이용한 피해 조사가 활발히 진행되고 있지만, 위성 영상 자료 역시 산불 발생 시점에 부합하는 자료를 입수하는 것은 매우 힘들다. 또한 입수된 영상의 정확도를 검증하기 위한 작업도 상당한 부담을 가지고 있는 것도 사실이다. 따라서 본 연구에서는 위성영상 자료를 이용하기 위한 사전작업으로 분광방사계를 사용하여 얻어진 식생의 분광방사특성을 이용하여 산불 피해지를 파악하고자 하였다. 일차적으로 육안관측에 의해 피해 정도를 판단하고 분광반사계를 이용하여 산불 발생 3개월과 6개월 후에 각각 측정된 현지조사 자료를 이용하여 이 두 자료를 분석함으로써 일회성 육안 관측에 의해 발생하기 쉬운 오류에 대하여 알아보고자 하였다. 또한 산불피해가 경미한 샘플링 포인트에서 수목의 소생가능성과 고사가능성을 보이는 군집을 분류할 수 있었다.

  • PDF

모션타이포그래피의 움직임을 통한 감성전달 (Emotion Communication through MotionTypography Based on Movement Analysis)

  • 손민정;이현주
    • 디지털콘텐츠학회 논문지
    • /
    • 제12권4호
    • /
    • pp.541-550
    • /
    • 2011
  • 모션타이포그래피는 디지털사회가 요구하는 감성적인 커뮤니케이션에 효과적인 수단으로 활용될 수 있는 요체가 된다. 이에 따라 본 연구에서는 모션타이포그래피로 감성을 표현하기 위하여 움직임의 특성을 연구하는 것을 목적으로 사용자 감성평가를 통해 모션타이포그래피의 감성척도를 구성하고 움직임에 대한 이미지 분포를 파악하였다. 본 연구는 문헌연구와 실험조사를 통하여 감성어휘를 수집하였고 KJ법과 클러스터 분석법으로 대표어휘를 추출하였다. 연구 결과, '차분한-활동적인', '부드러운-딱딱한' 축으로 구성된 모션타이포그래피 감성척도 공간을 구성하였으며, 모션타이포그래피의 움직임은 사용자에게 특정한 감성반응을 유발한다는 것을 알 수 있었다. 향후에 본 논문의 결과와 함께 감성어휘별 시각 요소의 특성을 도출한다면 일반인도 비교적 손쉽게 모션타이포그래피를 제작할 수 있는 가이드라인이 제시될 수 있을 것이다.