본 논문은 LBG 알고리즘을 이용하여 다양한 조명에 노출된 의상들의 색상 유사성을 안정적으로 판단하는 방법을 제안한다. 색상 유사성 판별을 위하여 기존에 대표적으로 사용되어왔던 히스토그램 인터섹션이나 누적 히스토그램 방법은 조명 변화에 민감하게 반응하여, 동일한 의상 색상이라 할지라도 서로 다른 조명환경에서는 서로 상이한 색상 판별 결과를 나타낸다. 본 논문에서는 조명에 의한 영향을 줄이고 색상 자체의 분포 특성을 분석하기 위하여 조명조건의 변화에도 일관된 특성을 유지하는 색조와 채도 컬러 성분에 대한 분포 특성을 분석한다. 색조와 채도에 의해 정의되는 2차원 공간에서 각 의상 영상에 대한 색상 분포를 분석하기 위하여 LBG 알고리즘에 의한 비모수적 클러스터링 기법을 적용하고, 클러스터링 결과 얻어진 두 영상의 클러스터 사이의 평균 유클리디안 거리 값을 계산하여 이를 색상 유사성을 판단하는 유사 값으로 정의한다. 제안 기법의 안정성을 입증하기 위하여 서로 다른 조명 환경에서 촬영된 12벌의 의상에 대하여 기존 히스토그램 분석 기법을 기반으로 한 색상 유사성 판별 결과와 제안 기법의 적용 결과를 비교하였다. 실험 결과 제안기법은 동일한 의상 쌍과 상이한 의상 쌍에 대하여 구분을 지을 수 있는 객관적 기준 정의가 용이하였고, 기준에 따른 의상의 동일성 판별 실험에서 91.6%의 판별 성공률을 얻었다.
본 논문은 GHT(Generalized Hough Transform)을 이용하여 물체의 위치, 회전각 및 크기변화를 인식하게 하는 것을 목표로 한다. 특히 회전 및 가려진 물체를 잘 인식함을 보이고자 한다. GHT는 일종의 모델베이스 물체인식 알고리즘으로써 먼저 물체의 정보를 R-table(Reference table) 형태로 저장한 뒤, 그 R-table을 사용하여 물체를 인식한다. 본 논문에서는 GHT 알고리즘을 실제적인 비젼 시스템에 적용하기 위하여 GHT 알고리즘을 개선하였다. 첫째, R-table 작성시 물체의 부분적인 경계선으로부터 R-table을 작성하였으며 영상을 디지털화 하였을 경우 발생되는 에러를 보상하기 위하여 클러스터링(clustering) 알고리즘을 사용하였다. 둘째, 기존의 Ballard의 GHT 알고리즘은 물체의 위치, 회전각 및 크기변화를 인식하기 위하여 4차원의 배열이 필요하지만 단지 2차원의 배열만으로 물체인식이 가능하도록 하였다. 특히 크기변화를 인식하는 간단한 방법을 제안하였다. 테스트 결과 제안된 GHT 알고리즘이 실제적인 비젼 시스템에 있어서 비교적 잘 동작함을 알 수 있었다. 특히 겹쳐진 물체를 잘 인식함을 알 수 있었다.
방사선영상의 신뢰할 만한 영역검출은 용접부위 결함탐지 이전의 중요한 작업 중의 하나이다. 추출되는 특징들은 각 분할된 영상에 대하여 서로 다른 군집으로 분류되어야한다. 그러나 종래의 분할 기법으로는 방사선영상 고유의 색도중첩과 낮은 SN비로 인해 만족할 만한 결과를 얻기가 쉽지 않다. 전체나 국부처리로는 잡음제거에 취약할 뿐만 아니라 영역분류도 어렵다. 이 논문은 산업용 CR 영상에서 영역기반실현의 분할을 위한 적절한 기법을 제시한다. 강판튜브에서 용접과 비용접 구간의 기하학적 차이가 영상화 과정을 통해 배경부, 두께부, 중간부 및 용접부 영역을 생성하고 계층 구조적 배열을 형성한다. 비록 그 구조가 잡음에 훼손되기는 하지만 영역구분 구도 각 영역의 차별된 기하학적 특성에 근거한 국부군집화에 의해 선별이 가능하다. 관련 영역의 기하학적 속성에 의해 그에 따른 영역이 계층별로 선별되어 실제 구분이 영역간 경계를 반영하기 때문에 직경과 길이방향의 군집화는 각 계층의 구별을 명확케 한다. 그리고 산업용 강판튜브 CR영상에 다양한 분할 방식으로 비교 실험을 실시하여 이 기법의 효과를 보였다.
본 연구에서는 다양한 위성영상자료(ASTER, KOMPSAT EOC, Landsat TM/ETM+)와 GIS 공간분석을 이용하여 비 접근 지역인 북한 서한만 일대의 간석지를 추출하였다. 특히 위성영상의 분광특성 분석을 통하여 미지형(micro-landform)을 분류하고 경년에 따른 간석지 면적의 변화를 비교 분석 하였다. 이를 위하여 우선 Landsat TM/ETM+의 multi 밴드를 이용하여 한반도에 분포하고 있는 8개의 간석지(서한만, 광량만, 해주만, 강화만, 아산만, 가로림만, 줄포만, 순천만)를 대상으로 분광특성을 분석하고 그 결과를 기반으로 ISODATA clustering 방법을 이용하여 북한 서한만 지역의 미지형 간석지의 미지형 특성을 추출하였다. 또한 경년에 따른 간석지 면적 변화를 알아보기 위하여 고지형도(1918-1920)를 디지털 자료로 변환하여 북한 서해안 전역의 간석지 GIS DB를 구축하였으며 최근의 시기별 다양한 위성영상 자료를 활용하여 작성된 간석지 분포도와 비교분석함으로서 비 접근 지역의 북한 서한만 일대 간석지 면적의 변화를 탐지 하였다. 아울러 간석지 미지형 분류와 경계구분에 효과적인 밴드를 제시하였으며 또한 위성영상자료 활용에 있어서 단일밴드인 우리나라 KOMPSAT EOC영상을 이용한 간석지 추출방법으로 high frequency pass filter method 통한 효율적인 간석지 분류 기법을 제시하였다.
최근 국지성 집중호우, 돌발홍수와 같은 급격한 기상변화로 인한 피해가 증가함에 따라, 레이더와 위성영상 등 원격탐측 방법을 사용한 강우 예측 및 관측에 대한 관심이 높아지고 있다. 본 연구에서는 자료지향형 모형의 하나인 뉴로-퍼지기법(ANFIS : Adaptive Neuro Fuzzy Inference System)을 사용하여 유역 유출량을 산정하였고, 레이더 단기 강우예측 모형인 MAPLE(McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation; Germann et al., 2002, 2004) 강우예측자료를 입력변수의 하나로 사용하였다. 뉴로-퍼지기법 및 레이더 강우예측자료를 사용한 홍수량 산정의 적용성 평가를 위해 충주댐 상류유역의 2010년 및 2011년 홍수기에 발생한 6개의 강우사상을 사용하여 모형 생성 시 사용한 강우자료의 종류에 따른 결과를 비교하고, 입력변수 조합에 따른 15개 모형을 구성하여, 모형 구성과정의 군집화 방법을 변화시키며 이에 따른 결과를 비교 분석하였다. 연구 결과, 기 발생한 홍수사상 중 가장 큰 홍수사상을 사용하여 모형을 생성할 경우 홍수량 산정의 정확도가 높아지는 것으로 나타났고, 모형의 생성이 가능한 범위 안에서 비교적 clustering 반경이 클수록 홍수량 산정의 정확도가 높아지는 것으로 나타났다. 충주댐 유역의 홍수량 예측에서는 t+6~t+16시간의 예측에서 MAPLE 강수예측자료를 사용한 모형의 홍수량 산정 결과의 정확도가 상대적으로 높은 것으로 나타났다.
In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problem. First, in preprocessing part, we use a CCD camera to obtain a picture frame in real-time. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. We use an AdaBoost algorithm proposed by Viola and Jones, which is exploited for the detection of facial image area between face and non-facial image area. As the feature extraction algorithm, PCA method is used. In this study, the PCA method, which is a feature extraction algorithm, is used to carry out the dimension reduction of facial image area formed by high-dimensional information. Secondly, we use pRBFNNs to identify the ID by recognizing unique pattern of each person. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. Coefficients of connection weight identified with back-propagation using gradient descent method. The output of pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of the Particle Swarm Optimization. The proposed pRBFNNs are applied to real-time face recognition system and then demonstrated from the viewpoint of output performance and recognition rate.
소비자에게 형성된 심상 분석을 통해 마케팅 전략을 수립하는데 주로 활용되고 있는 포지셔닝(Positioning) 기법은 공공시설, 기업, 대학이 공중에게 주는 이미지 분석을 비롯해 다양한 영역에서 활용되고 있다. 본 연구는 문헌정보학과 학생이 직장으로서 도서관 정보센터에 대하여 가지고 있는 이미지를 포지셔닝 기법을 통하여 분석하였다. 분석 결과, 학생들은 공공, 대학, 학교, 국가도서관을 유사한 이미지의 직장으로 인식하는 반면, 포털과 전문도서관은 이들과는 이질적인 진출처로 인식하고 있었으며, 직무에 있어서는 이용자봉사업무와 기술업무, 문화프로그램 업무를 각각 상이한 직무 군집으로 인식하고 있는 것으로 나타났다. 한편, 만족스러운 업무와 고용안정성이라는 이미지는 국가도서관과 공공도서관이 가장 크게 나타났으며, 보수가 가장 높을 것으로 기대되는 곳은 포털 업체, 성장가능성이 가장 높을 것으로 기대되는 곳은 전문도서관으로 포지셔닝되었다. 한편, 학생들이 가장 중요하게 생각하는 직장선택준거는 고용안정성으로 나타났으며, 가장 선호하는 직장으로는 공공도서관이 선택되었는데, 이러한 공공도서관 선호 집중 현상은 수도권대학보다는 지방대학 학생들에게 더욱 강하게 나타났다.
본 논문에서는 T1 강조영상, T2 강조 영상 그리고 PD의 영상의 특징을 상호 보완적으로 이용한 자동적인 영상 분할법을 제안한다. 제안한 분할 알고리듬은 3단계로 이루어지는데, 첫 단계에서는 PD 영상으로부터 대뇌 마스크를 획득한 후, T1과 T2, PD의 입력 영상에 대뇌 마스크를 씌워 각각의 대뇌 영상을 추출하고, 둘째 단계에서는 대뇌 내부 조직에 해당하는 두드러진 클러스터(outstanding cluster)를 3차원 클러스터들 중에서 선택한다. 3차원 클러스터는 최적스케일 영상(optimal scale image)으로 이루어지는 3차원 공간상에서 화소가 밀집된 봉우리들을 교집합해서 생성되는 클러스터로 결정한다. 최적스케일 영상은 각 2타원 히스토그램에 스케일 스페이스 필터링을 적용시키고 그래프(graph) 구조를 검색하여 2차원 히스토그램의 모양을 가장 잘 나타내는 봉우리(peak) 영상을 최적 스케일 영상으로 선택한다. 마지막 단계에서는 앞에서 찾은 두드러진 클러스터의 중심값을 FCM 알고리듬의 초기중심 값으로 두고, FCM 알고리듬을 이용하여 대뇌 영상을 분할한다. 제안한 분할 알고리듬은 정확한 클러스터의 중심값을 계산함으로 초기 값을 영향을 많이 받는 FCM 알고리듬의 단점을 보완하였고 다중 스펙트럼 영상의 특성을 조합하여 분할에 이용함으로 단일 스펙트럼 영상만을 이용하는 방법보다 향상된 결과를 얻을 수 있었다.
제품 디자인 기술의 발달로 다양한 컨셉의 제품들이 개발되고 있고 사용자 맞춤형 디자인 컨셉에 따른 제품이 활발하게 출시되고 있다. 성공적인 개발을 위해서는 컨셉을 제품 개발 프로세스에 정확히 전달하여야 목표하는 디자인을 개발할 수 있다. 제품 개발 목적에 맞는 디자인 컨셉을 찾기 위해서 붐박스를 겸한 모바일 폰에 대한 디자인 컨셉을 감성적 어휘 표현으로 찾아내고 해당 목표에 맞는 시각적 이미지를 이용하여 컨셉 목표를 구체화했다. 컨셉 목표를 구체화하기 위하여 개발에 참여하는 이해당사자가 서로 합의할 수 있는 이미지를 선정을 목표로 참여자 간의 의견 조율을 위한 테스트를 실시하였다. 본 연구에서는 합리적인 선택을 위하여 테스트 결과를 클러스트링 기법을 이용하여 컨셉과 이미지 선정을 위한 방법을 제안하고자 하였다. 이러한 방법은 디자인 컨셉을 설계하고 목표에 맞은 GUI 구현에 기여할 것으로 보인다.
유(流)세포분석기(flow cytometer)는 일정한 체적 내에 존재하는 세포의 종류 및 개체 수 등을 계측하는 장비로써 생체에서 추출한 유액상태(혈액 또는 림프액)의 세포를 모세관(micro-channel)을 통과시킬 때 발생하는 산란 및 형광 빛을 이용하여 계측한다. 유세포 분석기는 신약의 투석 후 세포수의 증감, 암세포의 전이 및 세포주기의 분석 등을 연구하는 데 사용되며 현재 Becton-Dickinson's 등에서 상용화된 제품을 생산 판매하고 있으며, 계측을 위해서는 생체에서 세포를 추출해야 한다는 단점을 가지고 있다. Harvard 의과대학에서 최근에 개발한 생체 유세포분석기(In vivo Flow Cytometer)는 생체에서 세포를 추출하지 않고 세포의 수를 계측할 수 있다[1]. 레이저가 혈관의 특정한 부위에 조사되고 있고, 이곳을 세포가 통과하면서 발생하는 형광을 계측함으로써 주어진 시간 동안 특정세포군이 얼마나 지나가는 지를 계측할 수 있는 장비이다. 본 특별기사에서는 혈류 가시화 분야의 독자를 위해 최근에 "Optics Express"에 "In vivo imaging flow cytometer"라는 제목으로 최근에 개제된 논문의 내용을 하여 소개한다[2].
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.