• Title/Summary/Keyword: ignite

Search Result 134, Processing Time 0.035 seconds

Hazelcast Vs. Ignite: Opportunities for Java Programmers

  • Maxim, Bartkov;Tetiana, Katkova;S., Kruglyk Vladyslav;G., Murtaziev Ernest;V., Kotova Olha
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.406-412
    • /
    • 2022
  • Storing large amounts of data has always been a big problem from the beginning of computing history. Big Data has made huge advancements in improving business processes by finding the customers' needs using prediction models based on web and social media search. The main purpose of big data stream processing frameworks is to allow programmers to directly query the continuous stream without dealing with the lower-level mechanisms. In other words, programmers write the code to process streams using these runtime libraries (also called Stream Processing Engines). This is achieved by taking large volumes of data and analyzing them using Big Data frameworks. Streaming platforms are an emerging technology that deals with continuous streams of data. There are several streaming platforms of Big Data freely available on the Internet. However, selecting the most appropriate one is not easy for programmers. In this paper, we present a detailed description of two of the state-of-the-art and most popular streaming frameworks: Apache Ignite and Hazelcast. In addition, the performance of these frameworks is compared using selected attributes. Different types of databases are used in common to store the data. To process the data in real-time continuously, data streaming technologies are developed. With the development of today's large-scale distributed applications handling tons of data, these databases are not viable. Consequently, Big Data is introduced to store, process, and analyze data at a fast speed and also to deal with big users and data growth day by day.

The Ignition Characteristics of Dead Leaves and Living Leaves of Various Trees in Young Dong Forest Areas (영동지역 주요 수종별 낙엽과 생엽의 착화특성에 관한 연구)

  • Park, Young-Ju;Lee, Si-Young;Sin, Young-Ju;Kim, Su-Young;Kim, Young-Tak;Lee, Hae-Pyeong
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.298-302
    • /
    • 2008
  • In this study, we have carried out the test to examine the ignition characteristics, such as a relation of moisture content and combustibility, and ignition temperature using KRS-RG-9000 tester, living leaves and dead leaves of significant 7 species of Young Dong Provinces of Korea after and before the rainfall. After 144 hours at normal temperature, the percentage of water content of the needle-shaped leaves was less than 10%. So it is suppose to be ignite easily. On the other hand, the self-temperature to ignite of broadleaf is higher. So the retard time at lower temperature is more long than needle-shaped leaf. Consequently, the fire-resistant qualities of broadleaf is higher than needle-shaped leaf.

  • PDF

Ignition Behavior of Single Coal Particles From Different Coal Ranks at High Heating Rate Condition

  • Lee, Dongfang;Kim, Ryang Gyoon;Jeon, Chung-Hwan
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.111-114
    • /
    • 2012
  • The ignition behavior of single coal particles of five kindes of coal with different ranks (low volatile bituminous, low volatile sub-bituminous, high volatile bituminous, lignite) with particle size of $150-200{\mu}m$ was investigated at high heating rate condition. Particles were injected into a laminar flow reactor and the ignition behavior was observed with high speed cinematography. Sub-bituminous were observed to ignite homogeneously; however, low volatile bituminous coal and lignite undergo fragmentation prior to igntion. The observation was analyzed with previous work.

  • PDF

New Ramp-reset Waveform for Fast Addressing in AC-PDPs

  • Kim, Oe-Dong;Ahn, Byoung-Nam;Choi, Kwang-Yeol;Yoo, Eun-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.643-646
    • /
    • 2005
  • We present new ramp-reset waveforms that realize fast addressing in AC-PDPs. These waveforms distort the distribution of wall charges on the surface of a phosphor layer: hence, the enhanced electric field helps to ignite a cell faster. They also reduce the black luminance: the divide of erasing ramp down discharges into two parts, i.e. a surface discharge and a vertical discharge, makes lower luminance.

  • PDF

QUENCHING OF TUNNELING MAGNETORESISTANCE IN MAGNETIC TUNNEL JUNCTIONS

  • Lee, K. I.;Lee, W. Y.;K. H. Shin;Lee, J. H.;K. Rhie;Lee, B. C.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.152-153
    • /
    • 2002
  • The report on large tunneling magnetoresistance (TMR) at room temperature in magnetic tunnel junctions (MTJ), composed of two ferromagnetic electrodes separated by a thin insulating barrier, has ignite the intensive research both from scientific and technological points of view. A simple model proposed by Juliere has explained the observed TMR surprisingly well, where the TMR is expressed in terms of the spin polarization P of the ferromagnetic electrodes. (omitted)

  • PDF

Numerical Analysis of Performance and Emission Characteristics according to Equivalence Ratio and Ignition Time of LNG Engine (LNG 엔진에서 당량비와 점화시기에 따른 엔진의 성능과 배기 특성에 관한 수치 해석적 연구)

  • Lee, Ziyoung;Park, Sungwook
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.49-51
    • /
    • 2015
  • In this research, engine performance and emission variation according to equivalence ratio and ignition time is calculated by validated analysis model. LNG engine ignite by spark plug and spark ignition modeled using DPIK model and G-equation that modeled initial flame surface called kernel and velocity and position of flame front. Engine pressure and emission was validated with experimental data.

  • PDF

Examination on the Mounting Status of Cigar Lighter Receptacle for Vehicles and Analysis of its Tracking Characteristics (차량용 시가 잭의 장착 실태조사 및 트레킹 특성 분석)

  • Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.4
    • /
    • pp.28-33
    • /
    • 2009
  • This study examined the mounting status of cigar lighter receptacles for vehicles and analyzed the tracking phenomenon that occurs when foreign material entered a cigar lighter receptacle to obtain data for the analysis of accident investigation. Regardless of the vehicle's output, cigar lighter receptacles are mounted in a vehicle horizontally, vertically, or at tilting or inclined angle. The tilting type cigar lighter receptacle is much easier to use but current leakage resulting from foreign materials (coffee, beverages, water, etc.) falling into the cigar lighter receptacle may cause a fire to start. This study used a vehicle battery (DC 12V) as a power supply for the tracking test and configured its circuit in the same way as that of an electrical device in a vehicle. The tracking phenomenon that occurred in the standby mode of the vehicle exhibited a fine flame and an irregular occurrence of smoke. While this tracking phenomenon was occurring, the leakage current and the reaching distance of the flame were measured to be approximately 930mA and $20{\sim}50cm$, respectively. It is thought that the resultant flame may ignite toluene, dust, cigarettes, etc. It was observed that as the tracking progressed, the internal metal socket melted and a hole was created, the surface of which was also severely carbonized. In addition, the electrical resistance of the carbonized conductive path was measured to be approximately $30{\Omega}$. It is thought that this much resistance may cause local heating when leakage current flows and could ignite any nearby flammable material.

Ignition Ability of Flammable Materials by Human Body's Electrostatic Discharge by Type of Fabric (옷감 종류별 인체대전 정전기 방전에 의한 인화성물질 점화능력)

  • Jong Soo Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.2
    • /
    • pp.1-8
    • /
    • 2024
  • Unwanted effects of electrostatic phenomena occur in various industries. Electrostatic problems originating from the human body in flammable atmospheres in the industry are especially concerning. A substantial volume of experimental data on the electrostatic charging voltages created on the human body owing to the rubbing of apparel were generated and reviewed during this study. The data were reviewed to determine whether the resultant charging levels of the human body are hazardous in flammable atmospheres. This study was conducted under several conditions, such as different fiber types used in apparel, shoe types, and relative humidities (RHs). The following conclusions were drawn in this study. ① The electrostatic charging levels of the human body owing to the rubbing of apparel increase with the increase in the surface resistances of apparel; however, the electrostatic charging levels may be different depending on the condition of the cloth surface. ② The discharging energy of 1.98-18.5 [mJ] from the human body exceeds the minimum ignition energy of most flammable materials, when removing an overcoat made of polyester, cotton and wool under severe conditions such as wearing height-raising shoes for men. ③ When removing antistatic apparel, the maximum discharging energy of 0.128 mJ from the human body is dangerous if the minimum ignition energy of the flammable material is between 10-5-10-4 [J] Grade; however, a minimum ignition energy of 10-3 J Grade of the flammable material is considered safe. ④ While wearing antistatic shoes, the electrostatic charging voltage generated in the human body when removing an overcoat is 30 V; therefore, wearing such shoes is a suitable countermeasure when handling flammable materials. However, the antistatic abilities of shoes reduce when thick socks are worn. ⑤ As RH increases, the electrostatic charging levels of the human body decrease. ⑥ The electrostatic charging levels of the human body from removing a cotton overcoat can ignite the majority of flammable materials when RH is less than 30% under severe conditions such as wearing height-raising shoes for men.

Evaluation of Heat Transfer Mechanisms and Damage Assessment through Fire Testing of Lithium-Ion Batteries (리튬이온 배터리의 화재 시험을 통한 열 전달 메커니즘 및 손상 평가)

  • Jeong-Ho Shin;Yong-Hyeon Kim;Eun-Ju Kim;Young-Chul Bae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.4
    • /
    • pp.669-676
    • /
    • 2024
  • This study aims to evaluate battery damage and heat transfer mechanisms through fire tests on lithium-ion batteries, and to explore ways to improve the efficiency and safety of battery management systems (BMS). Temperature changes in each sector are measured at points T1, T2, and T3 observing and recording the reactions of surrounding cells for 10 minutes after applying electricity to the ignition electrode. The results show that the batteries in sectors A and B fully ignite, causing severe physical damage, while the batteries in sector C do not ignite and sustain minimal damage. This confirms that the distance between sectors plays a crucial role in reducing ignition and heat propagation. The study suggests that considering the distance between sectors in the design of thermal management systems for lithium-ion batteries can significantly mitigate ignition and heat spread. Future experiments with various battery models and conditions will further propose the ways to enhance the efficiency and safety of BMS.

Fire Identification based on Physical Properties of Bean Oil (대두유의 물리적 특성에 따른 화재감식)

  • Jin, Bog-Kwon;Jung, Soo-Il
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.246-251
    • /
    • 2008
  • Oil Fire easily generates fire in the pressure of the atmosphere and below the normal temperature. Because these discharge flammable gas and ignite within the combustibles limit in conditioning to be assisted air and an invariable density. But Kitchen Fire shows very specific properties of matter and energy Qualification in most cases even though the same oil fires occured. In this Paper, around these specific character that Kitchen Fire have Properties of matter or energy Qualification studied on the genetic mechanism and counter measure scheme.