• Title/Summary/Keyword: iNOS,

Search Result 1,810, Processing Time 0.029 seconds

Inducible Nitric Oxide Synthase Mediates the Triglyceride-induced Death of THP-1 Monocytes

  • Byung Chul Jung;Hyun-Kyung Kim;Jaewon Lim;Sung Hoon Kim;Yoon Suk Kim
    • Biomedical Science Letters
    • /
    • v.29 no.2
    • /
    • pp.66-74
    • /
    • 2023
  • Triglyceride (TG) accumulation can cause monocytic death and suppress innate immunity. However, the signaling pathways involved in this phenomenon are not fully understood. This study aimed to examine whether inducible nitric oxide synthase (iNOS) is involved in the TG-induced death of THP-1 monocytes. Results showed that iNOS was upregulated in TG-treated THP-1 monocytes, and iNOS inhibition blocked TG-induced monocytic death. In addition, TG-induced poly (ADP-ribose) polymerase (PARP) cleavage and caspase-3 and -7 activation were suppressed by iNOS inhibition. Furthermore, the expression of X-linked inhibitor of apoptosis protein (XIAP) and survivin, which inhibit caspase-3 and -7, was reduced in TG-treated THP-1 monocytes, but iNOS inhibition recovered the TG-induced downregulation of XIAP and survivin expression. Considering that TG-induced monocytic death is triggered by caspase2 and -8, we investigated whether caspase-2 and -8 are linked to the TG-induced expression of iNOS in THP-1 monocytes. When the activities of caspase-2 and -8 were inhibited by specific inhibitors, the TG-induced upregulation of iNOS and downregulation of XIAP and survivin were restored in THP-1 monocytes. These results suggest that TG-induced monocytic death is mediated by the caspase-2/caspase-8/iNOS/XIAP and survivin/executioner caspase/PARP pathways.

Tandem Repeats (CCTTT)n in the Promoter of iNOS Gene in Korean Genome

  • Baek, Sun-Ah;Yoo, Min
    • Biomedical Science Letters
    • /
    • v.15 no.2
    • /
    • pp.167-170
    • /
    • 2009
  • Nitric oxide is an important factor to regulate the biochemical reactions in the body such as expansion of blood vessel, neural conduction and antimicrobial activity. There are two forms of nitric oxide synthase and iNOS has attracted most attention because it is involved in the development of diabetes and cardiac disease condition. There are several regulatory sequences in the promoter region of iNOS gene. One of them is (CCTTT)n. It has been reported that the number of tandem repeat of (CCTTT)n varies from population to population. So, we analyzed (CCTTT)n polymorphism in Korean genome for the purpose of comparison. According to our present study Koreans are different from other Asians reported previously because $(CCTTT)_{10}$ is the highest incidence as opposed to $(CCTTT)_{12}$ for other countries. This study should facilitate the understanding of the expression of iNOS gene in different population.

  • PDF

Inhibition of NF-kB/Rel by Paclitaxel in Mouse Macrophages

  • Lim, Jin-Soo;Lee, Seog-Ki;Jeon, Young-Jin
    • Toxicological Research
    • /
    • v.23 no.1
    • /
    • pp.19-24
    • /
    • 2007
  • We demonstrate that paclitaxel, an antitumor agent derived from yew tree, inhibits LPS- and $IFN-{\gamma}$-induced NF-kB/Rel activation in RAW 264.7 cells. Previously, paclitaxel ($>10{\mu}M$) has been known to induce iNOS gene expression in macrophages. However, in the previous report we described that the pretreatment of macrophages with low concentration of paclitaxel ($0.1{\mu}M$) for 8 h inhibited LPS-induced iNOS gene expression. Pretreatment of RAW 264.7 cells with paclitaxel significantly inhibited NF-kB/Rel transcriptional activation. Electrophoretic mobility shift assay further confirmed that pretreatment of macrophages with paclitaxel inhibited NF-kB/Rel DNA binding. Taxotere, a semisynthetic analog of paclitaxel, also inhibited LPS- and $IFN-{\gamma}$-induced iNOS gene expression. Collectively, these series of experiments indicate that paclitaxel inhibits iNOS gene expression by blocking NF-kB/Rel activation.

Anti-inflammatory Activity of Veronica peregrina

  • Jeon, Hoon
    • Natural Product Sciences
    • /
    • v.18 no.3
    • /
    • pp.141-146
    • /
    • 2012
  • Veronica peregrina (Scrophylariaceae) has been widely used as a Korean traditional medicine for the treatment of various pathological conditions including infection, hemorrhage and gastric ulcer. In the current study, we investigated the inhibitory effect of methanolic extracts of V. Peregrina (VPM) on the LPS-mediated nitric oxide (NO) production in mouse (C57BL/6) peritoneal macrophages. NO production was significantly down-regulated by the treatment of VPM dose dependently. To evaluate the mechanism of the inhibitory action of VPM on NO production, we performed iNOS enzyme activity assay and checked the change of inducible nitric oxide synthase (iNOS) levels by Western blotting. Although VPM did not affect iNOS enzyme activity, iNOS protein expression was attenuated by VPM indicating VPM inhibits NO production via suppression of iNOS enzyme expression. In addition, VPM attenuated the expression of another pro-inflammatory mediator such as cyclooxygenase-2 (COX-2) in a dose dependent manner. We also found that VPM can reduce trypsin-induced paw edema in mice. Based on this study, we suggest that V. peregrina may be beneficial in diseases which related to macrophage-mediated inflammatory disorders.

Selective iNOS Inhibition Attenuates Skeletal Muscle Reperfusion Injury (선택적 iNOS 억제에 의한 골격근 재관류 손상의 감소)

  • Park, Jong-Woong;Lee, Kwang-Suk;Kim, Sung-Kon;Park, Jung-Ho;Wang, Joon-Ho;Jeon, Woo-Joo;Lee, Jeong-Il
    • Archives of Reconstructive Microsurgery
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • The purpose of this study is to determine the effects of selective inducible nitric oxide synthase (iNOS) inhibitor N-[3-aminomethyl]benzyl]acetamidine (l400W) on the reperfused cremaster muscle. The extracellular superoxide dismutase knockout ($EC-SOD^{-/-}$) mice was used to make the experimental window for ischemia-reperfusion injury. The muscle was exposed to 4.5 h of ischemia followed by 90 min of reperfusion and the mice received either 3 mg/kg of 1400W or the same amount of phosphate buffered saline (PBS) subcutaneously at 10 min before the start of reperfusion. The results showed that 1400W treatment markedly improved the recovery of the vessel diameter and blood flow in the reperfused cremaster muscle compared to that of PBS group. Histological examination showed reduced edema in the interstitium and muscle fiber, and reduced nitrotyrosine formation (a marker of total peroxinitrite ($ONOO^-$) in 1400W-treated muscle compared to PBS. Our results suggest that iNOS and $ONOO^-$ products are involved in skeletal muscle I/R injury. Reduced I/R injury by using selective inhibition of iNOS is perhaps via limiting cytotoxic $ONOO^-$ generation, a reaction product of nitric oxide (NO) and superoxide anion ($O_2^-$). Thus, inhibition of iNOS appears to be a good treatment strategy in reducing clinical I/R injury.

  • PDF

Characterization of anti-oxidative effects of Mori Cortex Radicis

  • Noh, Won-Ki;Park, Jin-Baek;Kim, Sung-Jin
    • Advances in Traditional Medicine
    • /
    • v.10 no.4
    • /
    • pp.271-277
    • /
    • 2010
  • We tested to determine if Mori Cortex Radicis extract has antioxidant activities and its potential mechanism of action was explored. Anti-oxidative effects were tested by measuring free radical and nitric Oxide (NO) scavenging activity, and reducing power. Since iNOS and COX-2 are important enzymes responsible for the production of free radicals in the cell, Mori Cortex Radicis extract was tested as to whether it could inhibit iNOS and COX-2 expression in LPS stimulated Raw cells. 70% methanolic extract of Mori Cortex Radicis exerted significant DPPH free radical and NO scavenging activities. In addition, the Mori Cortex Radicis extract exerted dramatic reducing power with maximal activity observed at 1 mg/ml (11-fold over control). Production of iNOS induced by LPS was significantly inhibited by the Mori Cortex Radicis extract, suggesting it could inhibit NO production by suppressing iNOS expression. COX-2 induced by LPS was also significantly inhibited by the Mori Cortex Radicis extract. The extract contains well known antioxidant components including phenolics, flavonoids and anthocyanin at the concentration of 0.23 mg/g, 42.97 mg/g and 12.08 mg/g, respectively. These results suggest that 70% methanolic extract of Mori Cortex Radicis exerts significant anti-oxidant activity via inhibiting iNOS and COX-2 induction.

Effects of Astaxanthin on the Production of NO and the Expression of COX-2 and iNOS in LPS-Stimulated BV2 Microglial Cells

  • Choi, Seok-Keun;Park, Young-Sam;Choi, Dong-Kug;Chang, Hyo-Ihl
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1990-1996
    • /
    • 2008
  • Astaxanthin has shown antioxidant, antitumor, and anti-inflammatory activities; however, its molecular action and mechanism in the nervous system have yet to be elucidated. We examined the in vitro effects of astaxanthin on the production of nitric oxide (NO), as well as the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Astaxanthin inhibited the expression or formation of nitric oxide (NO), iNOS and COX-2 in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. Astaxanthin also suppressed the protein levels of iNOS and COX-2 in LPS-stimulated BV2 microglial cells. These results suggest that astaxanthin, probably due to its antioxidant activity, inhibits the production of inflammatory mediators by blocking iNOS and COX-2 activation or by the suppression of iNOS and COX-2 degradation.

Inhibition of p65 Nuclear Translocation by Baicalein

  • Seo, Min-Bum;Lee, Seog-Ki;Jeon, Young-Jin;Im, Jin-Su
    • Toxicological Research
    • /
    • v.27 no.2
    • /
    • pp.71-76
    • /
    • 2011
  • We demonstrate that baicalein, a bioactive flavonoid originally isolated from Scutellaria baicalensis, inhibits LPS-induced expression of iNOS gene in RAW 264.7 cells. Treatment of peritoneal macrophages and RAW 264.7 cells with baicalein inhibited LPS-stimulated nitric oxide production in a dose-related manner. Immunohistochemical staining of iNOS and RT-PCR analysis showed that the decrease of NO was due to the inhibition of iNOS gene expression in RAW 264.7 cells. Immunostaining of p65, EMSA, and reporter gene assay showed that baicalein inhibited NF-${\kappa}$B nuclear translocation, DNA binding, and transcriptional activation, respectively. Collectively, these series of experiments indicate that baicalein inhibits iNOS gene expression by blocking NF-${\kappa}$B nuclear translocation. Due to the critical role that NO release plays in mediating inflammatory responses, the inhibitory effects of baicalein on iNOS suggest that baicalein may represent a useful anti-inflammatory agent.

Effects of Sandalwood Essential Oil on the iNOS Expression and Proinflammatory Cytokine Production (Sandalwood Essential Oil의 iNOS 발현과 염증성사이토카인의 생성에 미치는 영향)

  • Park, Jeoung-Suk;Jung, Sook-Heui
    • YAKHAK HOEJI
    • /
    • v.57 no.1
    • /
    • pp.70-75
    • /
    • 2013
  • The present study was designed to determine the effect of the Sandalwood Essential Oil (Santalum album) on pro-inflammatory factors such as NO, iNOS expression and IL-$1{\beta}$, IL-6, TNF-${\alpha}$ in lipopolysaccharide (LPS) - stimulated RAW264.7 macrophages cells. The cell toxicity was determined by MTS assay. To evaluate of anti-inflammatory effect of Sandalwood Essential Oil, amount of NO was measured using the NO detection kit and the iNOS expression was measured by western blot analysis and reverse transcriptase polymerase chain reaction (RT-PCR). And proinflammatory cytokines were measured by ELISA kit. As a result, Sandalwood Essential Oil reduced NO, iNOS expression and IL-$1{\beta}$, IL-6, TNF-${\alpha}$ production without cytotoxicity. Our results suggest that the Sandalwood Essential Oil may have an anti-inflammatory property through suppressing inflammatory mediator productions and appears to be useful as an anti-inflammatory oil.

Effect of Immunosuppressants on Lipopolysaccharide-Induced Changes of Nitric Oxide Synthase Activity in Liver and Brain of Mice (면역억제제가 Lipopolysaccharide에 의한 생쥐의 간 및 뇌조직의 Nitric Oxide Synthase 활성도의 변화에 미치는 영향)

  • Min, Byung-Woo;Han, Hyng-Soo;Park, Jung-Sook;Kim, Choong-Young
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.2
    • /
    • pp.233-239
    • /
    • 1995
  • To verify the effect of immunosuppressants on the endotoxin-induced increase in iNOS activity, the action of immunosuppressants, dexamethasone (1.5 mg/kg), azathioprine (5 mg/kg/day) and cyclosporine (10 mg/kg), were evaluated in mice pretreated with LPS. The intraperitoneal injection of lipopolysaccharide (10 mg/kg) increased the nitric oxide synthase (NOS) activity in the brain and liver to maximum at 1 and 3 hours, respectively. The increase in NOS activity was blocked by the treatment with NOS inhibitor, LNAME(300 mg/kg) and aminoguanidine(100 mg/kg); a protein inhibitor, cycloheximide (10 mg/kg); and a transcription inhibitor of inducible NOS(iNOS), dexamethasone(1.5 mg/kg). Immunosuppressants, azathioprine (5 mg/kg) and cyclosporine (10 mg/kg), effectively blocked the increase in NOS activity. These results suggest that iNOS expression plays an important role in LPS-induced the increase in NOS activity and that immunosuppressants can be used as candidate for therapeutic agents in endotoxemia.

  • PDF