DOI QR코드

DOI QR Code

Effects of Astaxanthin on the Production of NO and the Expression of COX-2 and iNOS in LPS-Stimulated BV2 Microglial Cells

  • Choi, Seok-Keun (Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University) ;
  • Park, Young-Sam (Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University) ;
  • Choi, Dong-Kug (Department of Biotechnology, Konkuk University) ;
  • Chang, Hyo-Ihl (Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University)
  • Published : 2008.12.31

Abstract

Astaxanthin has shown antioxidant, antitumor, and anti-inflammatory activities; however, its molecular action and mechanism in the nervous system have yet to be elucidated. We examined the in vitro effects of astaxanthin on the production of nitric oxide (NO), as well as the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Astaxanthin inhibited the expression or formation of nitric oxide (NO), iNOS and COX-2 in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. Astaxanthin also suppressed the protein levels of iNOS and COX-2 in LPS-stimulated BV2 microglial cells. These results suggest that astaxanthin, probably due to its antioxidant activity, inhibits the production of inflammatory mediators by blocking iNOS and COX-2 activation or by the suppression of iNOS and COX-2 degradation.

Keywords

References

  1. Benveniste, E. N. 1997. Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis. J. Mol. Med. 75: 165-173 https://doi.org/10.1007/s001090050101
  2. Boujedaini, N., J. Liu, C. Thuillez, L. Cazin, and A. G. Mensah- Nyagan. 2001. In vivo regulation of vasomotoricity by nitric oxide and prostanoids during gestation. Eur. J. Pharmacol. 427: 143-149 https://doi.org/10.1016/S0014-2999(01)01233-X
  3. Boyle, E. A. and P. L. McGeer. 1990. Cellular immune response in multiple sclerosis plaques. Am. J. Pathol. 137: 575-584
  4. Chen, Y. C., S. C. Shen, W. R. Lee, W. C. Hou, L. L. Yang, and T. J. Lee. 2001. Inhibition of nitric oxide synthase inhibitors and lipopolysaccharide induced inducible NOS and cyclooxygenase- 2 gene expressions by rutin, quercetin, and quercetin pentaacetate in RAW 264.7 macrophages. J. Cell Biochem. 82: 537-548 https://doi.org/10.1002/jcb.1184
  5. Chun, W., H. J. Lee, P. J. Kong, G. H. Lee, I. Y. Cheong, and S. S. Kim. 2005. Synthetic wogonin derivatives suppress lipopolysaccharide-induced nitric oxide production and hydrogen peroxide-induced cytotoxicity. Arch. Pharm. Res. 28: 216-219 https://doi.org/10.1007/BF02977718
  6. Combs, C. K., J. C. Karlo, S. C. Kao, and G. E. Landreth. 2001. $\beta$-Amyloid stimulation of microglia and monocytes results in TNF-alpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J. Neurosci. 21: 1179-1188 https://doi.org/10.1523/JNEUROSCI.21-04-01179.2001
  7. Feldmann, M., F. M. Brennan, and R. Maini. 1998. Cytokines in autoimmune disorders. Int. Rev. Immunol. 17: 217-228 https://doi.org/10.3109/08830189809084493
  8. Gelman, B. B. 1993. Diffuse microgliosis associated with cerebral atrophy in the acquired immunodeficiency syndrome. Ann. Neurol. 34: 65-70 https://doi.org/10.1002/ana.410340112
  9. Gonzalez-Scarano, F. and G. Baltuch. 1999. Microglia as mediators of inflammatory and degenerative diseases. Annu. Rev. Neurosci. 22: 219-240 https://doi.org/10.1146/annurev.neuro.22.1.219
  10. Hou, R. C., H. L. Chen, J. T. Tzen, and K. C. Jeng. 2003. Effect of sesame antioxidants on LPS-induced NO production by BV2 microglial cells. Neuroreport 14: 1815-1819 https://doi.org/10.1097/00001756-200310060-00011
  11. Jeohn, G. H., C. L. Cooper, K. J. Jang, B. Liu, D. S. Lee, H. C. Kim, and J. S. Hong. 2002. Go6976 inhibits LPS-induced microglial TNFalpha release by suppressing p38 MAP kinase activation. Neuroscience 114: 689-697 https://doi.org/10.1016/S0306-4522(02)00356-1
  12. Kang, G., P. J. Kong, Y. J. Yuh, S. Y. Lim, S. V. Yim, W. Chun, and S. S. Kim. 2004. Curcumin suppresses lipopolysaccharideinduced cyclooxygenase-2 expression by inhibiting activator protein 1 and nuclear factor kappab bindings in BV2 microglial cells. J. Pharmacol Sci. 94: 325-328 https://doi.org/10.1254/jphs.94.325
  13. Kim, W. K., P. G. Jang, M. S. Woo, I. O. Han, H. Z. Piao, T. H. Joh, and H. S. Kim. 2004. A new anti-inflammatory agent KL- 1037 represses proinflammatory cytokine and inducible nitric oxide synthase (iNOS) gene expression in activated microglia. Neuropharmacology 47: 243-252 https://doi.org/10.1016/j.neuropharm.2004.03.019
  14. Kreutzberg, G. W. 1996. Microglia: A sensor for pathological events in the CNS. Trends Neurosci. 19: 312-318 https://doi.org/10.1016/0166-2236(96)10049-7
  15. McGeer, P. L., D. G. Kawamata, H. Walker, I. Akiyama, and E. G. McGeer. 1993. Microglia in degenerative neurological disease. Glia. 7: 84-92 https://doi.org/10.1002/glia.440070114
  16. Minghetti, L. and G. Levi. 1995. Induction of prostanoid biosynthesis by bacterial lipopolysaccharide and isoproterenol in rat microglial cultures. J. Neurochem. 65: 2690-2698 https://doi.org/10.1046/j.1471-4159.1995.65062690.x
  17. Phizackerley, P. J. and S. A. Al-Dabbagh. 1983. The estimation of nitrate and nitrite in saliva and urine. Anal. Biochem. 131: 242-245 https://doi.org/10.1016/0003-2697(83)90161-6
  18. Rosenbaum, J. T., H. O. McDevitt, R. B. Guss, and P. R. Egbert. 1980. Endotoxin-induced uveitis in rats as a model for human disease. Nature 286: 611-613 https://doi.org/10.1038/286611a0
  19. Schmidt, H. H. and U. Walter. 1994. NO at work. Cell 78: 919-925 https://doi.org/10.1016/0092-8674(94)90267-4
  20. Schmidt, H. W. and M. Kelm. 1996. Determination of nitrite and nitrate by the Griess reaction. In: Methods in Nitric Oxide Research, pp. 491-497. John Wiley, Sons Ltd
  21. Tha, K. K., Y. Oskuma, H. Miyazaki, T. Murayama, T. Uehara, and R. Hatakeyama. 2000. Changes in expressions of proinflammatory cytokines IL-1$\beta$TNF-$\alpha$, and IL-6 in the brain of senescence accelerated mouse (SAM) P8. Brain Res. 885: 25-31 https://doi.org/10.1016/S0006-8993(00)02883-3
  22. Tracey, K. J. and A. Cerami. 1994. Tumor necrosis factor: A pleiotropic cytokine and therapeutic target. Annu. Rev. Med. 45: 491-503 https://doi.org/10.1146/annurev.med.45.1.491
  23. Urushitani, M., S. Shimohama, T. Kihara, H. Sawada, A. Akaike, M. Ibi, et al. 1998. Mechanism of selective motor neuronal death after exposure of spinal cord to glutamate: Involvement of glutamate-induced nitric oxide in motor neuron toxicity and nonmotor neuron protection. Ann. Neurol. 44: 796-807 https://doi.org/10.1002/ana.410440514

Cited by

  1. Astaxanthin, oxidative stress, inflammation and cardiovascular disease vol.5, pp.4, 2009, https://doi.org/10.2217/fca.09.19
  2. Astaxanthin prevents in vitro auto-oxidative injury in human lymphocytes vol.26, pp.5, 2008, https://doi.org/10.1007/s10565-010-9156-4
  3. Neuroprotective effect of astaxanthin on H2O2-induced neurotoxicity in vitro and on focal cerebral ischemia in vivo vol.1360, pp.None, 2008, https://doi.org/10.1016/j.brainres.2010.09.016
  4. Astaxanthin addition improves human neutrophils function: in vitro study vol.49, pp.8, 2008, https://doi.org/10.1007/s00394-010-0103-1
  5. Simplified Heterocyclic Analogues of Fluoxetine Inhibit Inducible Nitric Oxide Production in Lipopolysaccharide-Induced BV2 Cells vol.34, pp.4, 2008, https://doi.org/10.1248/bpb.34.538
  6. Astaxanthin: A Potential Therapeutic Agent in Cardiovascular Disease vol.9, pp.3, 2008, https://doi.org/10.3390/md9030447
  7. Oxidative stress in human lymphocytes treated with fatty acid mixture: Role of carotenoid astaxanthin vol.25, pp.7, 2008, https://doi.org/10.1016/j.tiv.2011.04.018
  8. Minimizing the cancer-promotional activity of cox-2 as a central strategy in cancer prevention vol.78, pp.1, 2008, https://doi.org/10.1016/j.mehy.2011.09.039
  9. Astaxanthin in Cardiovascular Health and Disease vol.17, pp.2, 2008, https://doi.org/10.3390/molecules17022030
  10. Bioactive Compounds from Macroalgae in the New Millennium: Implications for Neurodegenerative Diseases vol.12, pp.9, 2014, https://doi.org/10.3390/md12094934
  11. Carotenoids: potential allies of cardiovascular health? vol.59, pp.None, 2008, https://doi.org/10.3402/fnr.v59.26762
  12. Lutein suppresses inflammatory responses through Nrf2 activation and NF‐κB inactivation in lipopolysaccharide‐stimulated BV‐2 microglia vol.59, pp.9, 2015, https://doi.org/10.1002/mnfr.201500109
  13. Trans-Cinnamaldehyde, An Essential Oil in Cinnamon Powder, Ameliorates Cerebral Ischemia-Induced Brain Injury via Inhibition of Neuroinflammation Through Attenuation of iNOS, COX-2 Expression and NF vol.18, pp.3, 2016, https://doi.org/10.1007/s12017-016-8395-9
  14. Astaxanthin Protects Against Retinal Damage: Evidence from In Vivo and In Vitro Retinal Ischemia and Reperfusion Models vol.41, pp.11, 2008, https://doi.org/10.3109/02713683.2015.1127392
  15. Effects of Astaxanthin from Litopenaeus Vannamei on Carrageenan-Induced Edema and Pain Behavior in Mice vol.21, pp.3, 2008, https://doi.org/10.3390/molecules21030382
  16. Effects of Dietary Supplementation with Astaxanthin on Histamine Induced Lesions in the Gizzard and Proventriculus of Broiler Chicks vol.29, pp.6, 2008, https://doi.org/10.5713/ajas.15.1020
  17. Astaxanthin reduces type 2 diabetic-associated cognitive decline in rats via activation of PI3K/Akt and attenuation of oxidative stress vol.13, pp.1, 2008, https://doi.org/10.3892/mmr.2015.4615
  18. Immunomodulators as Therapeutic Agents in Mitigating the Progression of Parkinson’s Disease vol.6, pp.4, 2016, https://doi.org/10.3390/brainsci6040041
  19. Neuroprotective mechanisms of astaxanthin: a potential therapeutic role in preserving cognitive function in age and neurodegeneration vol.39, pp.1, 2008, https://doi.org/10.1007/s11357-017-9958-x
  20. Microalgae as healthy ingredients for functional food: a review vol.8, pp.8, 2008, https://doi.org/10.1039/c7fo00409e
  21. Astaxanthin induces migration in human skin keratinocytes via Rac1 activation and RhoA inhibition vol.11, pp.4, 2017, https://doi.org/10.4162/nrp.2017.11.4.275
  22. Astaxanthin Ameliorates Doxorubicin-Induced Cognitive Impairment (Chemobrain) in Experimental Rat Model: Impact on Oxidative, Inflammatory, and Apoptotic Machineries vol.55, pp.7, 2008, https://doi.org/10.1007/s12035-017-0797-7
  23. Marine natural pigments as potential sources for therapeutic applications vol.38, pp.5, 2008, https://doi.org/10.1080/07388551.2017.1398713
  24. Anti-neuroinflammatory effects of ethanolic extract of black chokeberry (Aronia melanocapa L.) in lipopolysaccharide-stimulated BV2 cells and ICR mice vol.12, pp.1, 2018, https://doi.org/10.4162/nrp.2018.12.1.13
  25. Astaxanthin is neuroprotective in an aged mouse model of Parkinson’s disease vol.9, pp.12, 2008, https://doi.org/10.18632/oncotarget.23737
  26. Anti-inflammatory effect of Tauroursodeoxycholic acid in RAW 264.7 macrophages, Bone marrow-derived macrophages, BV2 microglial cells, and spinal cord injury vol.8, pp.None, 2008, https://doi.org/10.1038/s41598-018-21621-5
  27. Dietary Composition and Cardiovascular Risk: A Mediator or a Bystander? vol.10, pp.12, 2018, https://doi.org/10.3390/nu10121912
  28. Astaxanthin as a Peroxisome Proliferator-Activated Receptor (PPAR) Modulator: Its Therapeutic Implications vol.17, pp.4, 2008, https://doi.org/10.3390/md17040242
  29. Novel Insights into the Biotechnological Production of Haematococcus pluvialis-Derived Astaxanthin: Advances and Key Challenges to Allow Its Industrial Use as Novel Food Ingredient vol.8, pp.10, 2008, https://doi.org/10.3390/jmse8100789
  30. Antioxidant and anti-inflammatory mechanisms of action of astaxanthin in cardiovascular diseases (Review) vol.47, pp.1, 2008, https://doi.org/10.3892/ijmm.2020.4783
  31. Astaxanthin, COVID‐19 and immune response: Focus on oxidative stress, apoptosis and autophagy vol.34, pp.11, 2020, https://doi.org/10.1002/ptr.6797
  32. Astaxanthin and its Effects in Inflammatory Responses and Inflammation-Associated Diseases: Recent Advances and Future Directions vol.25, pp.22, 2020, https://doi.org/10.3390/molecules25225342
  33. Alzheimer’s disease: natural products as inhibitors of neuroinflammation vol.28, pp.6, 2008, https://doi.org/10.1007/s10787-020-00751-1
  34. Astaxanthin engages the l-arginine/NO/cGMP/KATP channel signaling pathway toward antinociceptive effects vol.32, pp.8, 2008, https://doi.org/10.1097/fbp.0000000000000655
  35. Neuroprotective Natural Products for Alzheimer’s Disease vol.10, pp.6, 2021, https://doi.org/10.3390/cells10061309
  36. An Overview of NO Signaling Pathways in Aging vol.26, pp.15, 2008, https://doi.org/10.3390/molecules26154533
  37. Multi‐Mechanistic Antidiabetic Potential of Astaxanthin: An Update on Preclinical and Clinical Evidence vol.65, pp.24, 2021, https://doi.org/10.1002/mnfr.202100252
  38. Anti-inflammatory and antioxidant effects of astaxanthin following spinal cord injury in a rat animal model vol.177, pp.None, 2021, https://doi.org/10.1016/j.brainresbull.2021.10.014
  39. Anti-inflammatory action of astaxanthin and its use in the treatment of various diseases vol.145, pp.None, 2008, https://doi.org/10.1016/j.biopha.2021.112179
  40. Imidazolylacetophenone oxime-based multifunctional neuroprotective agents: Discovery and structure-activity relationships vol.228, pp.None, 2008, https://doi.org/10.1016/j.ejmech.2021.114031