• 제목/요약/키워드: i-NOS

검색결과 1,789건 처리시간 0.028초

소 자궁에서 endothelial nitric oxide synthase(NOS) 및 inducible NOS의 발현 (Expression and localization of endothelial and inducible nitric oxide synthase in bovine uterus)

  • 이용덕;김승준;문창종;신태균
    • 대한수의학회지
    • /
    • 제43권4호
    • /
    • pp.551-554
    • /
    • 2003
  • Nitric oxide synthase (NOS) has been reported in uterus. We examined the expression of the NOS isoforms, constitutive endothelial (eNOS) and inducible NOS (iNOS), in bovine uterus by immunohistochemistry. eNOS immunoreactivity was localized predominantly to the endothelial cells that line uterine microvessels and to endometrial glandular epithelial cells, but was barely detectable in endometrial stromal cells. iNOS immunostaining was detected in glandular epithelial and stromal cells in the endometrium and in the endothelial cells of myometrial blood vessels. These findings suggest that both eNOS and iNOS may play important roles in the physiology of the uterus, possibly by generating NO.

iNOS 발현 검출을 위한 in vitro 시스템의 확립 및 적송잎 추출물에 의한 저해효과 검증 (Establishment of In vitro Detection System for iNOS Expression and the Verification of Suppressive Effect by Pine Needle Extract)

  • 김남영;장혜지;이동근;장민경;이승우;전명제;김미향;김성구;이상현
    • KSBB Journal
    • /
    • 제26권2호
    • /
    • pp.172-176
    • /
    • 2011
  • This study was aimed to verify suppressive effect of pine-needle extract on lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) expression. In order to evaluate suppressive effect on iNOS expression, RAW 264.7 cells were stably transfected using an iNOS promoterluciferase reporter plasmid yielding RAW 264.7/pGL2-NeomiNOS_ pro11 cells. Established in vitro detection system revealed to diminish LPS-induced iNOS expression by 0.1~500 ${\mu}g/mL$ of saponin at the concentration-dependant manner. Pine needle extract also diminished LPS-induced iNOS expression to 92 and 88% at 500 and 50 ${\mu}g/mL$, respectively. These results suggest that the in vitro detection system developed here could be useful for the verification of suppressive materials on iNOS expression and pine needle extract could be used for the development of functional foods.

Inhibition of p65 Nuclear Translocation by Radicicol, Heat Shock Protein Inhibitor

  • Kim, Sang-Gyu;Jeon, Young-Jin;Lee, Seog-Ki
    • Toxicological Research
    • /
    • 제21권4호
    • /
    • pp.285-290
    • /
    • 2005
  • We demonstrate that radicicol, a macrocyclic antifungal antibiotic originally isolated from Monosporium bonorden, inhibits LPS-induced expression of iNOS gene in RAW 264.7 cells. Treatment of peritoneal macrophages and RAW 264.7 cells with radicicol inhibited LPS-stimulated nitric oxide production in a dose-related manner. Immunohistochemical staining of iNOS and RTPCR analysis showed that the decrease of NO was due to the inhibition of iNOS gene expression in RAW 264.7 cells. Immunostaining of p65, EMSA, and reporter gene assay showed that radicicol inhibited $NF-\kappa/Rel$ nuclear translocation. DNA binding, and transcriptional activation, respectively. Collectively, these series of experiments indicate that radicicol inhibits iNOS gene expression by blocking $NF-\kappa/Rel$ nuclear translocation. Due to the critical role that NO release plays in mediating inflammatory responses, the inhibitory effects of radicicol on iNOS suggest that radicicol may represent a useful anti-inflammatory agent.

고혈압에서 혈관 산화질소 합성 동위 효소 발현 변화 (Altered Vascular Expression of Nitric Oxide Synthase Isozymes in Hypertension)

  • 김인광;강대길;이종은;오봉석
    • Journal of Chest Surgery
    • /
    • 제32권2호
    • /
    • pp.138-143
    • /
    • 1999
  • 배경: 혈관 내피층에서 분비되어 평활근층 이완을 일으키는 물질의 본체는 산화질소(nitric oxide, NO)이며 NO synthase(NOS)에는 뇌형(brain NOS, bNOS), 내피세포형(endothelial constitutive NOS, ecNOS) 및 유도형 (inducible NOS, iNOS) 등 세 가지 동위효소가 있음이 알려져 있다. 고혈압은 혈관 내피층 기능 이상을 보임이 알려져 있으나 NOS 동위 효소의 변화를 포함한 세포내 기전은 아직 확실치 않다. 저자들은 고혈압 기전을 구명하기 위한 일환으로 고혈압 혈관에서 NOS 동위효소가 어떻게 변화되는가 조사하고자 하였다. 대상 및 방법: 흰쥐에서 two-kidney, one clip (2K1C) 고혈압과 deoxycorticosterone acetate(DOCA)-salt 고혈압을 일으켰다. 4주 뒤 고혈압이 일어난 것을 확인하고 적출 흉부 대동맥 표본에서 Western blot 분석에 의한 NOS 동위효소 발현 조사 및 비색법에 의한 조직내 산화질소 정량을 하였다. 결과: 2K1C 및 DOCA-salt 흰쥐에서 실험군은 각각의 대조군에 비해 유의하게 높은 혈압을 보였다. 두 고혈압군에서 모두 적출 대동맥 표본의 bNOS 및 ecNOS 단백 발현이 감소되었다. iNOS 단백은 DOCA-salt 고혈압에서 변화를 보이지 않으나 2K1C 고혈압에서는 역시 감소를 보였다. 혈관조직내 산화질소 함량은 두 고혈압에서 모두 유의하게 감소되었다. 결론: 2K1C 및 DOCA-salt 고혈압에서 혈관의 NOS 발현과 산화질소 함량이 감소되어 있으며 이는 고혈압의 유지 기전에 공헌하리라 추측되었다.

  • PDF

Kainic Acid-induced Neuronal Death is Attenuated by Aminoguanidine but Aggravated by L-NAME in Mouse Hippocampus

  • Byun, Jong-Seon;Lee, Sang-Hyun;Jeon, Seong-Ho;Kwon, Yong-Soo;Lee, Hee-Jae;Kim, Sung-Soo;Kim, Young-Myeong;Kim, Myong-Jo;Chun, Wan-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권4호
    • /
    • pp.265-271
    • /
    • 2009
  • Nitric oxide (NO) has both neuroprotective and neurotoxic effects depending on its concentration and the experimental model. We tested the effects of NG-nitro-L-arginine methyl ester (L-NAME), a nonselective nitric oxide synthase (NOS) inhibitor, and aminoguanidine, a selective inducible NOS (iNOS) inhibitor, on kainic acid (KA)-induced seizures and hippocampal CA3 neuronal death. L-NAME (50 mg/kg, i.p.) and/or aminoguanidine (200 mg/kg, i.p.) were administered 1 h prior to the intracerebroventricular (i.c.v.) injection of KA. Pretreatment with L-NAME significantly increased KA-induced CA3 neuronal death, iNOS expression, and activation of microglia. However, pretreatment with aminoguanidine significantly suppressed both the KA-induced and L-NAME-aggravated hippocampal CA3 neuronal death with concomitant decreases in iNOS expression and microglial activation. The protective effect of aminoguanidine was maintained for up to 2 weeks. Furthermore, iNOS knockout mice ($iNOS^{-1-}$) were resistant to KA-induced neuronal death. The present study demonstrates that aminoguanidine attenuates KA-induced neuronal death, whereas L-NAME aggravates neuronal death, in the CA3 region of the hippocampus, suggesting that NOS isoforms play different roles in KA-induced excitotoxicity.

Effect of Chitosan on Nitric Oxide Content and Inducible Nitric Oxide Synthase Activity in Serum and Expression of Inducible Nitric Oxide Synthase mRNA in Small Intestine of Broiler Chickens

  • Li, H.Y.;Yan, S.M.;Shi, B.L.;Guo, X.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권7호
    • /
    • pp.1048-1053
    • /
    • 2009
  • The present study was conducted to determine the effects of chitosan on nitric oxide (NO) content and inducible nitric oxide synthase (iNOS) activity in serum, and relative expression of iNOS mRNA in the duodenum, jejunum, and ileum of broiler chickens. A total of 240 one-day-old Arbor Acre mixed-sex broiler chickens were randomly allotted to six dietary treatments with five replicates in each treatment and eight chickens in each replicate. The broiler chickens in the six treatments were fed the basal diet supplemented with 0 (control), 0.05, 0.2, 0.5, 1.0 or 2.0 g/kg chitosan. The trial lasted for 42 days. The results showed that dietary chitosan enhanced NO content and iNOS activity in serum as well as iNOS mRNA expression in the duodenum and ileum of broiler chickens in a quadratic dose-dependent manner (p<0.05), and improved jejunum iNOS mRNA expression in a quadratic dose-dependent manner (p<0.10) with increasing addition of chitosan. Chicks fed a diet containing 0.5-1.0 g/kg chitosan had higher NO content and iNOS activity in serum as well as small-intestinal iNOS mRNA expression compared with birds given the control diet, but positive effects of chitosan tended to be suppressed when addition of chitosan in the diet was increased to 2.0 g/kg. These results implied that there was a threshold level of chitosan inclusion beyond which progressive reductions in serum NO content and small intestinal iNOS expression occured, and the regulation of chitosan on immune functions in chickens is probably associated with activated expression of iNOS and NO secretion.

소풍도적산의 iNOS 발현과 NO 생성 억제가 아토피 피부염에 미치는 영향 (Sopungdojeok-San Inhibits Atopy-liked Dermal Inflammation through Regulation of iNOS mRNA Expresssion & NO production)

  • 안상현;김진택
    • 대한한의학방제학회지
    • /
    • 제15권1호
    • /
    • pp.199-211
    • /
    • 2007
  • Inducible nitric oxide synthase (iNOS) are important inflammation enzyme and severe up-nitric oxide (NO) production by this enzyme has been intricated with pathogenesis of inflammation diseases as atopy dermatitis. The present study was designed in order to determine whether Sopungdojeok-san could inhibit atopy dermatitis through modulation of iNOS mRNA expression and NO production, We found that iNOS mRNA expression and NO production in RAW 264.7 macrophages stimulated with lipopolysaccharide dose-dependantly decreased by Sopungdojeok-san extract treatment (0.4 - 1.0 mg/ml). The distribution of iNOS positive reacted cell in atopy dermatitis elicited skin of mice were remarkably decreased by Sopungdojeok-san administration (2.5 ml/kg/day). The SOD ability of Sopungdojeok-san were dose-dependantly increased from 0.6 mg/ ml than butylated hydroxyanisole. These data likely indicate that Sopungdojeok-san may act as inflammatory regulator for atopy dermatitis may be possible to develop useful agent for chemopreventation of NO-intricate inflammatory diseases.

  • PDF

청기산(淸肌散)의 iNOS 발현과 NO 생성 억제가 NC/Nga 생쥐의 아토피 피부염에 미치는 영향 (Cheonggi-san Inhibits Atopy Dermatitis in NC/Nga Mouse through Regulation of iNOS mRNA Expresssion & NO production)

  • 안상현;김호현;김진택
    • 동의생리병리학회지
    • /
    • 제21권5호
    • /
    • pp.1092-1098
    • /
    • 2007
  • Inducible nitric oxide synthase (iNOS) are important inflammation enzyme and severe up-nitric oxide (NO) production by this enzyme has been intricate with pathogenesis of atopy dermatitis. The present study was designed in order to determine whether Cheonggi-san could inhibit atopy dermatitis through modulation of iNOS mRNA expression and NO production. We found that iNOS mRNA expression and NO production in RAW 264.7 macrophages stimulated with lipopolysaccharide dose-dependantly decreased by Cheonggi-san extract treatment (0.5 - 2.0 mg/ml). The distribution of iNOS positive reacted cell in NC/Nga mice with atopy dermatitis were decreased by Cheonggi-san extract treatment (2.5 ml/kg/day) and apoptosis were increased. These data likely indicate that Cheonggi-san may act as inflammatory regulator for atopy dermatitis and may be possible to develop useful agent for chemoprevention of NO intricate inflammatory diseases.

행인 과루인 추출물이 마우스 대식세포주인 RAW264.7 세포주의 iNOS 발현 및 Superoxide 형성에 미치는 영향 (Effects of Seman Armenicae and Radix Trichosanthis on the iNOS expression and superoxide formation in the RAW264.7 cells)

  • 박정운;문석재;문구;원진희
    • 대한한방종양학회지
    • /
    • 제5권1호
    • /
    • pp.137-150
    • /
    • 1999
  • Macrophage play a major role in host defence against infection and tumor development and this activity is regulated through the production of several mediators. In particular, the production of NO by macrophages mediates killing or growth inhibition of tumor cells, bacteria, fungi and parasites. However, over-expression of iNOS by various stimuli, resulting in over-production of NO, contributes to the pathogenesis of septic shock and some inflammator and auto-immune disease. Therefore, it would be valuable to develop potent and selective inhibitors of for potential therapeutic use. Thus the agent that supprees the expression of iNOS mRNA or enzyme protein will be usefull for the prevention of various diseases. We are intersted in identifying selective inhibitiors of iNOS which might be useful intreating inflammatory human diseases. In summary, we have demenstrated that scopoletin, isolated from Seman Armenicae and Radix Trichosanthis the production of NO induced by $IFN-\gammer$ plus LPS in RAW 264.7 macrophages, The mechanism for the inhibition of NO production was due to suppression of the expression of iNOS mRNA or enzyme protein.

  • PDF

Expression of TRPV1 and iNOS in the Dorsal Root Ganglion Exposed by Autologous Nucleus Pulposus in the Rat

  • Kim, Su-Jeong;Seo, Jeong-Min;Cho, Yun-Woo;Park, Hea-Woon;Lee, Joon-Ha;Hwang, Se-Jin;Ahn, Sang-Ho
    • The Journal of Korean Physical Therapy
    • /
    • 제22권3호
    • /
    • pp.71-77
    • /
    • 2010
  • Purpose: To determine whether upregulation of inducible nitric oxide synthase (iNOS) transcription and translation is related to radicular pain in a model of lumbar disc herniation. Also, to investigate the temporal changes of mRNA expression of iNOS and the identity of iNOS and transient receptor potential vanilloid (TRPV) 1 channel expression cells in dorsal root ganglion (DRG) of a model of lumbar disc herniation. Methods: A lumbar disc herniated rat model was developed by implantation of the autologous nucleus pulposus, harvested from the coccygeal vertebra of each tail, on the left L5 nerve root just proximal to the DRG. Rats were tested for mechanical allodynia of the plantar surface of both hind paws 2 days before surgery and 1, 5, 10, 20 and 30 days postoperatively. Reverse transcription polymerase chain reaction (RT-PCR) was used to follow iNOS mRNA expression. To stain iNOS and TRPV1 in DRG, an immunohistochemical study was done 10 days after surgery. Results: A significant drop in mechanical withdrawal threshold on the ipsilateral and contralateral hind paws was observed 1 day after surgery and was prolonged to 30 days in rats with lumbar disc herniation. The expression of mRNA for iNOS peaked at postoperative day 10 on both sides of the DRG. iNOS-positive sensory neurons in the DRG varied in size from large to small diameter cells. A majority of small and intermediate sensory neurons were TRPV1-positive cells. Double immunofluorescence staining for TRPV1 and iNOS revealed that most intermediate TRPV1-positive sensory neurons co-localized with iNOS-positive neurons. Conclusion: Nucleus pulposus-induced mechanical allodynia can be generated without mechanical compression. This pain is related to temporal changes in expression of iNOS mRNA in the DRG. Co-localization of TRPV1 and iNOS in intermediate neurons of the DRG is correlated with pain modality and intensity.