• 제목/요약/키워드: hysteretic characteristics

검색결과 203건 처리시간 0.026초

고무코어패드와 강재이력감쇠장치를 결합한 복합감쇠장치의 이력특성에 관한 연구 (A Study on Characteristics of Hybrid Damping Device Combining Rubber Core Pad and Hysteretic Steel Slit)

  • 박병태;이준호
    • 한국공간구조학회논문집
    • /
    • 제23권1호
    • /
    • pp.45-52
    • /
    • 2023
  • This study proposes an RCS composite damping device that can achieve seismic reinforcement of existing buildings by dissipating energy by inelastic deformation. A series of experiments assessing the performances of the rubber core pad, hysteretic steel slit damping device, and hybrid RCS damping device were conducted. The results showed that the ratios of the deviations to the mean values satisfied the domestic damping-device conformity condition for the load at maximum device displacement in each direction, at the maximum force and minimum force at zero displacement, as well as the hysteresis curve area. In addition, three analysis models based on load-displacement characteristics were proposed for application to seismic reinforcement design. In addition, the validity of the three proposed models was confirmed, as they simulated the experimental results well. Meanwhile, as the shear deformation of the rubber-core pad increased, the hysteretic behavior of super-elasticity greatly increased the horizontal force of the damping device. Therefore, limiting the allowable displacement during design is deemed to be necessary.

건축구조물의 지진응답제어를 위한 MR 감쇠기 예비설계절차 (Preliminary Design Procedure of MR Dampers for Controlling Seismic Response of Building Structures)

  • 이상현;민경원;이루지;김중구
    • 한국지진공학회논문집
    • /
    • 제8권5호통권39호
    • /
    • pp.55-64
    • /
    • 2004
  • 본 연구의 목적은 건축구조물의 지진응답제어를 위한 MR 감쇠기의 크기, 개수 및 최적위치를 결정하는 설계절차를 제안하는 것이다. 기존의 연구에서 제안된 MR 감쇠기의 모델링 방법들의 특성과 차이점을 진동제어효과의 관점에서 분석하였으며, 이 모델 중 해석이 간단하고 이력특성을 모사할 수 있는 이력 이점성 모델을 사용하여 MR 감쇠기의 변수연구를 수행하였다. 건축구조물의 층간에 설치되는MR 감쇠장치의 용량은 지진응답의 경우 구조물의 주기와 감쇠비에 따라 층전단력이 다르게 됨을 고려하여, 20개의 지진하중에 대한 해석으로부터 구한 응답스펙트럼을 이용하여 결정하였으며, 설치 갯수에 따른 제어경향을 분석하였다. MR 감쇠기의 크기, 개수, 그리고 최적위치를 결정하기 위한 방법이 제안되었으며, 기존의 점성감쇠기 설계시 이용되는 층간변위 혹은 층간속도가 가장 큰 층에 순차적으로 설치하는 방법과의 비교를 통해 유효성을 검증하였다. 수치해석결과는 제안된 방법을 사용하여 MR 감쇠기의 크기, 개수, 그리고 위치를 합리적으로 결정할 수 있음을 보여준다.

강재판형 이력댐퍼 연결부재와 RC벽체의 접합상세에 따른 구조거동 (Structural Behavior of Joints between the Hysteretic Steel Damper Connector and RC Wall Depending on Connection Details)

  • 강인석;허무원
    • 콘크리트학회논문집
    • /
    • 제24권6호
    • /
    • pp.737-744
    • /
    • 2012
  • 강재형 댐퍼는 주로 철골구조에서 많이 사용되어 왔으나 최근에 들어 철근콘크리트 건물에도 사용빈도가 증가하는 추세이다. 철근콘크리트 건물에 강재이력댐퍼를 적용하기 위해서는 댐퍼의 접합부재가 댐퍼의 지지능력을 보 및 벽체로 전달하기에 적합한 강도와 강성을 지녀야만 한다. 하지만 균열로 인한 철근콘크리트 요소의 손상은 부득이한 것으로, 댐퍼로부터 지지부재로의 하중전달 메커니즘과 댐퍼 지지부재 이력특성의 규명은 이러한 댐퍼의 거동을 평가하는데 매우 중요하다. 이에 이 연구에서는 EaSy 댐퍼와 같은 강재판형 이력댐퍼의 지지부재와 RC벽체와의 접합상세를 대상으로 실험을 실시하였다. 실험 결과 전단과 관련된 균열의 양과 패턴을 제외하고는 모든 실험체의 파괴패턴은 거의 동일한 것으로 나타났으며, 잘 분산된 균열을 지닌 HD-3 실험체가 에너지소산능력, 강성저하 그리고 강도저하 측면에서 좋은 거동을 보여주었다.

Influence of pinching effect of exterior joints on the seismic behavior of RC frames

  • Favvata, Maria J.;Karayannis, Chris G.
    • Earthquakes and Structures
    • /
    • 제6권1호
    • /
    • pp.89-110
    • /
    • 2014
  • Nonlinear dynamic analyses are carried out to investigate the influence of the pinching hysteretic response of the exterior RC beam-column joints on the seismic behavior of multistory RC frame structures. The effect of the pinching on the local and global mechanisms of an 8-storey bare frame and an 8-storey pilotis type frame structure is evaluated. Further, an experimental data bank extracted from literature is used to acquire experimental experience of the range of the real levels that have to be considered for the pinching effect on the hysteretic response of the joints. Thus, three different cases for the hysteretic response of the joints are considered: (a) joints with strength and stiffness degradation characteristics but without pinching effect, (b) joints with strength degradation, stiffness degradation and low pinching effect and (c) joints with strength degradation, stiffness degradation and high pinching effect. For the simulation of the beam-column joints a special-purpose rotational spring element that incorporates the examined hysteretic options developed by the authors and implemented in a well-known nonlinear dynamic analysis program is employed for the analysis of the structural systems. The results of this study indicate that the effect of pinching on the local and global responses of the examined cases is not really significant at early stages of the seismic loading and especially in the cases when strength degradation in the core of exterior joint has occurred. Nevertheless in the cases when strength degradation does not occur in the joints the pinching may increase the demands for ductility and become critical for the columns at the base floor of the frame structures. Finally, as it was expected the ability for energy absorption was reduced due to pinching effect.

Seismic performance of RC columns retrofitted using high-strength steel strips under high axial compression ratios

  • Yang, Yong;Hao, Ning;Xue, Yicong;Feng, Shiqiang;Yu, Yunlong;Zhang, Shuchen
    • Structural Engineering and Mechanics
    • /
    • 제84권3호
    • /
    • pp.345-360
    • /
    • 2022
  • In this paper, the impact on seismic performance of an economical effective technique for retrofitting reinforced concrete (RC) columns using high-strength steel strips under high axial compression ratios was presented. The experimental program included a series of cyclic loading tests on one nonretrofitted control specimen and three retrofitted specimens. The effects of the axial compression ratio and spacing of the steel strips on the cyclic behavior of the specimens were studied. Based on the test results, the failure modes, hysteretic characteristics, strength and stiffness degradation, displacement ductility, and energy dissipation capacity of the specimens were analyzed in-depth. The analysis showed that the transverse confinement provided by the high-strength steel strips could effectively delay and restrain diagonal crack development and improve the failure mode, which was flexural-shear failure controlled by flexural failure with better ductility. The specimens retrofitted using high-strength steel strips showed more satisfactory seismic performance than the control specimen. The seismic performance and deformation capacity of the retrofitted RC columns increased with decreasing axial compression ratio and steel strip spacing. Based on the test results, a hysteretic model for RC columns that considers the transverse confinement of high-strength steel strips was then established. The hysteretic model showed good agreement with the experimental results, which verified the effectiveness of the proposed hysteretic model. Therefore, the aforementioned analysis can be used for the design of retrofitted RC columns.

요구스펙트럼의 비탄성이력특성 -완전탄소성모델을 중심으로- (Inelastic Hysteretic Characteristics of Demand Spectrum -Focused on Elasto Perfectly Plastic Model-)

  • 이현호
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.367-374
    • /
    • 2000
  • This study investigates the effect of hysteretic characteristics to the Inelastic Demand Spectrum (IDS) which was expressed by an acceleration(Sa) and a displacement response spectrum (Sd). Elasto Perfectly Plastic(EPP) model is used in this study and inelastic demand spectrum (Sa vs, Sd) are obtained from a given target ductility ratio. For a given target ductility ratio IDS can be obtained by using nonlinear time history analysis of single degree of system with forth five recorded earthquake ground motions for stiff soil site. The effect EPP model under demand spectrum is investigated by ductility factor and natural frequency. According to the results obtained in this study IDS has dependency on ductility factor and natural frequency.

  • PDF

압전 진동 에너지 수확 장치의 전기 유발 감쇠 특성 및 최대 전력 발생 조건 (Electrically Induced Damping Characteristics and a Relevant Requirement for the Maximum Power Generation in Piezoelectric Vibration Energy Harvesters)

  • 김재은
    • 한국소음진동공학회논문집
    • /
    • 제25권6호
    • /
    • pp.406-413
    • /
    • 2015
  • The piezoelectric coupling in piezoelectric vibration energy harvesters with load resistance induces electrical damping as well as increase in the system stiffness. Starting from analytically deriving the explicit relations through governing equations in the frequency domain, this work identifies the characteristics of the electrically induced damping mechanism and shows that the electrically induced damping serves as a structural hysteretic damping on condition that a piezoelectric vibration energy harvester is excited at its short-circuit resonant frequency and its load resistor is optimally impedance- matched at the same time. Finally, it is analytically verified that the equivalence of a mechanical and an electrically induced damping ratio is required for the maximum power generation at a load resistor, which was claimed in some literature.

Study of nonlinear hysteretic modelling and performance evaluation for piezoelectric actuators based on activation functions

  • Xingyang Xie;Yuguo Cui;Yang Yu
    • Smart Structures and Systems
    • /
    • 제33권2호
    • /
    • pp.133-143
    • /
    • 2024
  • Piezoelectric (PZT) actuators have been widely used in precision positioning fields for their excellent displacement resolution. However, due to the inherent characteristics of piezoelectric actuators, hysteresis has been proven to greatly reduce positioning performance. In this paper, five mathematical hysteretic models based on activation function are proposed to characterize the nonlinear hysteresis characteristics of piezoelectric actuators. Then the performance of the proposed models is verified by particle swarm optimization (PSO) algorithm and the experiment data. Thirdly, the fitting performance of the proposed models is compared with the classical Bouc-Wen model. Finally, the performance of the five proposed models in modelling hysteresis nonlinearity of piezoelectric drivers is compared, in terms of RMSE, MAPE, SAPE and operation efficiency, and relevant suggestions are given.

상용차량의 정확한 하중 측정을 위한 겹판스프링의 이력특성 모델링 기법 개발 (Development of Modeling Method of Hysteretic Characteristics for Accurate Load Measurement of Trucks)

  • 서명국;바트바야르 엔크바트;신희영;이호연;고재일
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권2호
    • /
    • pp.38-45
    • /
    • 2021
  • In recent years, the demand for an onboard scale system which can directly monitor load distribution and overload of vehicles has increased. Depending on the suspension type of the vehicle, the onboard scale system could use different types of sensors, such as, angle sensors, pressure sensors, load cells, etc. In the case of a vehicle equipped with leaf spring suspension system, the load of the vehicle is measured by using the deflection or displacement of the leaf spring. Leaf springs have hysteresis characteristics that vary in displacement depending on the load state. These characteristics cause load measurement errors when moving or removing cargoes. Therefore, this study aimed at developing an onboard scale device for cargo vehicles equipped with leaf springs. A sectional modeling method which can reduce measurement errors caused by hysteresis characteristics was also proposed.

Dynamic loading tests and analytical modeling for high-damping rubber bearings

  • Kyeonghoon Park;Taiji Mazda;Yukihide Kajita
    • Earthquakes and Structures
    • /
    • 제25권3호
    • /
    • pp.161-175
    • /
    • 2023
  • High-damping rubber bearings (HDRB) are commonly used as seismic isolation devices to protect civil engineering structures from earthquakes. However, the nonlinear hysteresis characteristics of the HDRB, such as their dependence on material properties and hardening phenomena, make predicting their behavior during earthquakes difficult. This study proposes a hysteretic model that can accurately predicts the behavior of shear deformation considering the nonlinearity when designing the seismic isolation structures using HDR bearings. To model the hysteretic characteristics of the HDR, dynamic loading tests were performed by applying sinusoidal and random waves on scaled-down specimens. The test results show that the nonlinear characteristics of the HDR strongly correlate with the shear strain experienced in the past. Furthermore, when shear deformation occurred above a certain level, the hardening phenomenon, wherein the stiffness increased rapidly, was confirmed. Based on the experimental results, the dynamic characteristics of the HDR, equivalent stiffness, equivalent damping ratio, and strain energy were quantitatively evaluated and analyzed. In this study, an improved bilinear HDR model that can reproduce the dependence on shear deformation and hardening phenomena was developed. Additionally, by proposing an objective parameter-setting procedure based on the experimental results, the model was devised such that similar parameters could be set by anyone. Further, an actual dynamic analysis could be performed by modeling with minimal parameters. The proposed model corresponded with the experimental results and successfully reproduced the mechanical characteristics evaluated from experimental results within an error margin of 10%.