• 제목/요약/키워드: hyperelastic

검색결과 100건 처리시간 0.02초

타이어 측면 형상변화에 따른 CARCASS 장력분포 변동에 관한 유한요소 해석 (Finite Element Analysis for the Variation of CARCASS Tension Distribution to the Sidewall Contour Change)

  • 정현성;이홍우;하대율;김상현;조진래;김남전;김기운
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.438-445
    • /
    • 2000
  • Tire performance is significantly influenced by the cord tension distribution, and which is governed by the tire shape. To increase the tire performance, it is very important for one to find the shape with the ideal distribution of tension. But it is not easy to find such an optimal tire shape. Therefore, in order for the successful tire-shape optimization, we need to investigate how the change of tire shape influences on the cord tension. In this paper, we intend to numerically analyse the relation between the carcass shape and the cord tension.

  • PDF

고무 알루미늄 적층 구조물의 유한요소 해석 (FEM Analysis of alternatively laminated structure constructed of rubber and reinforced aluminium layers)

  • 박성한;이방업;홍명표;류백능
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.402-406
    • /
    • 2000
  • Strain energy function of the isoprene rubber was accurately determined by the experiments of uniaxial tension, planar tension, biaxial tension and volumetric compression. Deformation behavior of alternatively laminated structure of elastomer and reinforced aluminium layers, was analysed by Finite Element method. As a result, Ogden strain energy function obtained from the experiments describes the hyperelastic characteristics of the rubber very well. The compressibility of the rubber reduces axial stiffness of the structure. The axial stiffness of alternatively laminated structure being larger than shear stiffness. Which enables the structure to be shear-deformed easily.

  • PDF

고체구조물의 비선형변형 수치해석에 대한 이론적 고찰(1) -일반이론- (A Study on the Numerical Technique for the Nonlinear Deformation Analysis of Solid Structures(1) -General Theory Development-)

  • Youngjoo Kwon
    • 한국정밀공학회지
    • /
    • 제15권10호
    • /
    • pp.193-202
    • /
    • 1998
  • 본 논문에서는 비선형 고체역학 이론에 대하여 특히 시간에 무관한 변형을 하는 초탄성 및 탄소성고체물질의 비선형 변형이론에 대하여 철저한 분석을 수행하였다 특히 비선형 변형의 해석방범론에 대하여 특별한 관심을 가지고 분석하였다. 비선형 변형해석 방법론으로 널리 논의되고 있는 증분뉴튼랩슨 방법에 대하여 수정된 개념을 제시하여 비선형 변형 해석의 정 확성을 향상시켰다.

  • PDF

Nonlinear dynamic response and its control of rubber components with piezoelectric patches/layers using finite element method

  • Manna, M.C.;Bhattacharyya, R.;Sheikh, A.H.
    • Smart Structures and Systems
    • /
    • 제6권8호
    • /
    • pp.889-903
    • /
    • 2010
  • Idea of using piezoelectric materials with flexible structures made of rubber-like materials is quite novel. In this study a non-linear finite element model based on updated Lagrangian (UL) approach has been developed for dynamic response and its control of rubber-elastic material with surface-bonded PVDF patches/layers. A compressible stain energy density function has been used for the modeling of the rubber component. The results obtained are compared with available analytical solutions and other published results in some cases. Some results are reported as new results which will be useful for future references since the number of published results is not sufficient.

Finite element procedure of initial shape determination for hyperelasticity

  • Yamada, Takahiro
    • Structural Engineering and Mechanics
    • /
    • 제6권2호
    • /
    • pp.173-183
    • /
    • 1998
  • In the shape design of flexible structures, it is useful to predict the initial shape from the desirable large deformed shapes under some loading conditions. In this paper, we present a numerical procedure of an initial shape determination problem for hyperelastic materials which enables us to calculate an initial shape corresponding to the prescribed deformed shape and boundary condition. The present procedure is based on an Arbitrary Lagrangian-Eulerian (ALE) finite element method for hyperelasticity, in which arbitrary change of shapes in both the initial and deformed states can be treated by considering the variation of geometric mappings in the equilibrium equation. Then the determination problem of the initial shape can be formulated as a nonlinear problem to solve the unknown initial shape for the specified deformed shape that satisfies the equilibrium equation. The present approach can be implemented easily to the finite element method by employing the isoparametric hypothesis. Some basic numerical results are also given to characterize the present procedure.

Fractional wave propagation in radially vibrating non-classical cylinder

  • Fadodun, Odunayo O.;Layeni, Olawanle P.;Akinola, Adegbola P.
    • Earthquakes and Structures
    • /
    • 제13권5호
    • /
    • pp.465-471
    • /
    • 2017
  • This work derives a generalized time fractional differential equation governing wave propagation in a radially vibrating non-classical cylindrical medium. The cylinder is made of a transversely isotropic hyperelastic John's material which obeys frequency-dependent power law attenuation. Employing the definition of the conformable fractional derivative, the solution of the obtained generalized time fractional wave equation is expressed in terms of product of Bessel functions in spatial and temporal variables; and the resulting wave is characterized by the presence of peakons, the appearance of which fade in density as the order of fractional derivative approaches 2. It is obtained that the transversely isotropic structure of the material of the cylinder increases the wave speed and introduces an additional term in the wave equation. Further, it is observed that the law relating the non-zero components of the Cauchy stress tensor in the cylinder under consideration generalizes the hypothesis of plane strain in classical elasticity theory. This study reinforces the view that fractional derivative is suitable for modeling anomalous wave propagation in media.

자동차용 고무부품에 대한 대변형 유한요소해석 (Large deformation finite element analysis for automotive rubber components)

  • 김헌영;최천;방원준;김재수
    • 오토저널
    • /
    • 제15권1호
    • /
    • pp.107-119
    • /
    • 1993
  • The objective of this study is to analyze the static and dynamic characteristics of automotive rubber components by computer simulation. Bush / rectangular type engine mounts and wind shield weather strip are analyzed by using the commercial code ABAQUS and the results are verified by experiments. Large deformation static response is analyzed in order to get the information about the deformation pattern and static stiffness of engine mounts, and about the seperation force of wind shield weather strip from body. The isothermal steady-state dynamic response of components which have been subjected to an initial static pre-load is analyzed for the dynamic stiffness of engine mount rubber components. There are good agreements between simulation and experiments. So it is possible to apply the computer simulation to the design of automotive rubber components.

  • PDF

Honeycomb 스포크로 된 비공기압 타이어의 고유진동수 해석 (Natural Frequency Analysis of a NPT with Honeycomb Spokes)

  • 조홍준;이치훈;김기홍;김감찬;김두만
    • 항공우주시스템공학회지
    • /
    • 제5권2호
    • /
    • pp.33-39
    • /
    • 2011
  • The vibration characteristic of tires is one of very important issues which heavily affect the noise and comfort on driving. Therefore, when the new tire is designed, the vibration characteristic of tire should be considered. In this paper, the vibration characteristic of non-pneumatic tire is investigated for geometric of NPT which is designed by cell angle of spoke. The analysis is based on the finite element method and used ABAQUS program, which is able to non-linear analysis. The material of NPT is used for the Ogden energy model, which is model of hyperelastic material. This paper investigate natural frequency and modal of NPT and compare result of NPT with it of pneumatic tire.

Structural Simulation of Wrist Band for Wearable Device According to Design and Material Model

  • Kwon, Soon Yong;Cho, Jung Hwan;Yoo, Jin;Cho, Chul Jin;Cho, Sung Hwan;Woo, In Young;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • 제53권4호
    • /
    • pp.226-233
    • /
    • 2018
  • Elastomers based on the thermoplastics are widely used in rubber industries. Thermoplastic elastomers have the advantages of an easy shaping process and elimination of recycling problems. Thermoplastic polyester elastomer (TPE) is used for making rubber bands in wearable devices and its applications are increasing. In this study, five wrist bands were designed and their mechanical behaviors were examined by computer simulation, using hyper elastic models, Mooney-Rivlin and Ogden models, and a linear elastic model. Simulation results were compared and discussed in terms of band design and material model.

Analysis of axisymmetric fractional vibration of an isotropic thin disc in finite deformation

  • Fadodun, Odunayo O.
    • Computers and Concrete
    • /
    • 제23권5호
    • /
    • pp.303-309
    • /
    • 2019
  • This study investigates axisymmetric fractional vibration of an isotropic hyperelastic semi-linear thin disc with a view to examine effects of finite deformation associated with the material of the disc and effects of fractional vibration associated with the motion of the disc. The generalized three-dimensional equation of motion is reduced to an equivalent time fraction one-dimensional vibration equation. Using the method of variable separable, the resulting equation is further decomposed into second-order ordinary differential equation in spatial variable and fractional differential equation in temporal variable. The obtained solution of the fractional vibration problem under consideration is described by product of one-parameter Mittag-Leffler and Bessel functions in temporal and spatial variables respectively. The obtained solution reduces to the solution of the free vibration problem in literature. Finally, and amongst other things, the Cauchy's stress distribution in thin disc under finite deformation exhibits nonlinearity with respect to the displacement fields whereas in infinitesimal deformation hypothesis, these stresses exhibit linear relation with the displacement field.