References
- Akinola, A.P. (1999), "An energy function for transversely isotropic elastic material and Ponyting effect", J. Appl. Math. Comput., 6(3), 639-649. https://doi.org/10.1007/BF03009956.
- Akinola, A.P. (2001), "An application of nonlinear fundamental problems of a transversely isotropic layer in finite elastic deformation", Int. J. Nonlin. Mech., 36(2), 307-321. https://doi.org/10.1016/S0020-7462(00)00016-0.
- Bashmal, S., Bhat, R. and Rakheja, S., (2010), "Frequency equations for the in-plane vibration of circular annular disks", Adv. Acoust. Vib., 2010, Article ID 501902, 8. http://dx.doi.org/10.1155/2010/501902.
- Batra, R.C. and Iaccarino, G.L. (2008), "Exact solutions for radial deformations of a functionally-graded isotropic and incompressible second order elastic cylinder", Int. J. Nonlin. Mech., 43(5), 383-398. https://doi.org/10.1016/j.ijnonlinmec.2008.01.006.
- Benferhat, R., Tahar, H.D., Said-Mansour, M. and Hadji, L. (2016), "Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations", Earthq. Struct., 10(6), 1429-1449. https://doi.org/10.12989/eas.2016.10.6.1429.
- Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088.
- Bouboulas, A.S. and Anifantis, N.K. (2011), "Vibration analysis of a rotating disk with crack", Mech. Eng., 2011, Article ID 727120, 13. doi:10.5402/2011/727120.
- Burago, N.G., Nikitin, A.D., Nikitin, I.S. and Yushkovsky, P.A. (2016), "Stationary vibrations and fatigue failure of compressor disks of variable thickness", Procedia Struct. Integrity: 21st Eur. Conf. Fract., ECF 21, 2, 1109-1116. https://doi.org/10.1016/j.prostr.2016.06.142.
- Chen, W., Ye, L. and Sun, H. (2010), "Fractional diffusion equations by the Kansa method", Comput. Math. Appl., 59(5), 1614-1620. https://doi.org/10.1016/j.camwa.2009.08.004.
- Ciarlet, P.G. (1998), Mathematical Elasticity Volume I: Three-Dimensional Elasticity, Elsevier Science Publisher, Amsterdam.
- Das, D., Sahoo, P. and Saha, K. (2010), "Free vibration analysis of a rotating annular disc under uniform pressure loading", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 224(3), 615-634. https://doi.org/10.1243/09544062JMES1662.
- Deng, H. and Ouyang, H., (2010), "Vibration of spinning discs and powder formation in centrifugal atomization", Proc. R. Soc. A: Math. Phys. Eng. Sci., 467(2126), 361-380. https://doi.org/10.1098/rspa.2010.0099.
- Du, R., Cao, W.R. and Sun, Z.Z. (2010), "A compact difference scheme for the fractional diffusion-wave equation", Appl. Math. Model., 34(10), 2998-3007. https://doi.org/10.1016/j.apm.2010.01.008.
- Fadodun, O.O. and Akinola, A.P. (2017a), "Bending of an isotropic non-classical thin rectangular plate", Struct. Eng. Mech., 61(4), 437-440. https://doi.org/10.12989/sem.2017.61.4.437.
- Fadodun, O.O., Borokinni, A.S., Layeni, O.P. and Akinola, A.P. (2017b), "Dynamics analysis of a transversely isotropic nonclassical thin plate", Wind Struct., 25(1), 25-38. https://doi.org/10.12989/was.2017.25.1.025.
- Fadodun, O.O., Layeni, O.P. and Akinola, A.P. (2017c), "Fractional wave propagation in radially vibrating non-classical cylinder", Earthq. Struct., 13(5), 465-471. https://doi.org/10.12989/eas.2017.13.5.465.
- Fu, Z.J., Chen, W. and Yang, H.T. (2013), "Boundary particle method for Laplace transformed time fractional diffusion equations", J. Comput. Phys., 235, 52-66. https://doi.org/10.1016/j.jcp.2012.10.018.
- Gorman, D.G., Reese, J.M., Horacek, J. and Dedouch, K. (2001), "Vibration analysis of a circular disc backed by a cylindrical cavity", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 215(11), 1303-1311. https://doi.org/10.1243/0954406011524685.
- Hasheminejad, S.M., Ghaheri, A. and Vaezian, S. (2013), "Exact solution for free in-plane vibration analysis of an eccentric elliptical plate", Acta Mechanica, 224(8), 1609-1624. https://doi.org/10.1007/s00707-013-0829-y.
- Hutton, D.V. (2004), Fundamentals of Finite Element Analysis, Mc Graw Hill.
- Jaroszewick J. (2017), "Natural frequencies of axisymmetric vibration of thin hyperbolic circular plates with clamped edges", Int. J. Appl. Mech. Eng., 22(2), 451-457. DOI: 10.1515/ijame- 2017-0028.
- Kumar, R., Reen, L.S. and Garg, S.K. (2017), "Effects of time and diffusion phase-lags in a thin circular disc with axisymmetric heat supply", Cogent Math., 4(1), 1369848. doi.org/10.1080/23311835.2017.1369848.
- Li, X. (2014), "Analytical solutions to a fractional generalized two phase Lame-Clapeyron Stefan problem", Int. J. Numer. Meth. Heat. Fluid Flow, 24(6), 1251-1259. https://doi.org/10.1108/HFF-03-2013-0102.
- Lychev, S.A, Lycheva, T.N. and Manzhirov, A.V. (2011), "Unsteady vibration of a growing circular plate", Mech. Solid., 46(2), 325-333. https://doi.org/10.3103/S002565441102021X.
- Lyu, P., Du, J., Liu, Z. and Zhang, P. (2017), "Free in-plane vibration analysis of elastically restrained annular panels made of functionally graded material", Compos. Struct., 178(15), 246-259. https://doi.org/10.1016/j.compstruct.2017.06.065.
- Senjanovic, I., Hadzic, N. and Vladimir, N. (2015), "Vibration analysis of thin circular plates with multiple openings by the assumed mode method", Proc. Inst. Mech. Eng., Part M: J. Eng. Maritime Environ., 231(1), 70-85. https://doi.org/10.1177/1475090215621578.
- Sharma, J.N., Sharma, D. and Kumar, S. (2012), "Stress and strain analysis of rotating FGM thermoelastic circular disk by using FEM", Int. J. Pure Appl. Math., 73(3), 339-352.
- Treeby, B.E. and Cox, B.T. (2010), "Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian", J. Acoust. Soc. Am., 195(5), 2741-2748. https://doi.org/10.1121/1.3377056.
- Ursoniu, C., Pepa, D., Tufoi, M. and Gillich G.R. (2017), "The influence of stiffening ribs on the natural frequencies of butterfly valve disks", Int. Conf. Appl. Sci.: Mater. Sci. Eng., 163(1), 012041. doi:10.1088/1757-899X/163/1/012041.
- Zhang, H., Yuan, H., Yang, W. and Zhao, T. (2017), "Research on vibration localization of mistuned bladed disk system", J. Vibroeng., 19(5), 3296-3312. https://doi.org/10.21595/jve.2017.17822.
- Zhong, R., Wang, Q., Tang, J., Shuai, C. and Qin, B. (2018), "Vibration analysis of functionally graded carbon nanotube reinforced composites (FG-CNTRC) circular, annular and sector plates", Compos. Struct., 194(15), 49-67. https://doi.org/10.1016/j.compstruct.2018.03.104.
- Zur, K.K. (2015), "Green's function in frequency analysis of circular thin plates of variable thickness", J. Theor. Appl. Mech., 53(4), 873-884. doi: 10.15632/jtam-pl.53.4.873.
- Zur, K.K. (2016a), "Green's function approach to frequency analysis of thin circular plates", Bull. Polish Acad. Sci. Tech. Sci., 64(1), 181-188. DOI: 10.1515/bpasts-2016-0020.
- Zur, K.K. (2016b), "Green's function for frequency analysis of thin annular plates with nonlinear variable thickness", Appl. Math. Model., 40(5-6), 3601-3619. https://doi.org/10.1016/j.apm.2015.10.014.
- Zur, K.K. (2018), "Quasi-Green's function approach to free vibration analysis of elastically supported functionally graded circular plates", Compos. Struct., 183(1), 600-610. https://doi.org/10.1016/j.compstruct.2017.07.012.
Cited by
- Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model vol.34, pp.5, 2019, https://doi.org/10.12989/scs.2020.34.5.643
- Thermoelastic response of functionally graded sandwich plates using a simple integral HSDT vol.91, pp.7, 2019, https://doi.org/10.1007/s00419-021-01973-7