• Title/Summary/Keyword: hyperbolic convex set

Search Result 3, Processing Time 0.023 seconds

A CHARACTERIZATION OF THE HYPERBOLIC DISC AMONG CONSTANT WIDTH BODIES

  • Jeronimo-Castro, Jesus;Jimenez-Lopez, Francisco G.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.2053-2063
    • /
    • 2017
  • In this paper we prove a condition under which a hyperbolic starshaped set has a center of hyperbolic symmetry. We also give the definition of isometric diameters for a hyperbolic convex set, which behave similar to affine diameters for Euclidean convex sets. Using this concept, we give a definition of constant hyperbolic width and we prove that the only hyperbolic sets with constant hyperbolic width and with a hyperbolic center of symmetry are hyperbolic discs.

Necessary optimality conditions in the small for degenerate hyperbolic distributed-parameter control systems

  • Chang, Kun-Soo;Lee, In-Beum
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1043-1048
    • /
    • 1990
  • The degenerate case of multivariable hyperbolic distributed-parameter systems (systems of hyperbolic partial differential equations) in time coordinate t and space coordinate x is characterized by a property that all the characteristic curves of the state equations are parallel to the coordinate axes of independent variables. It is a disturbing fact, although not well known, that the so-called maximum principle as applied to these systems does not exist for the control that depend on time alone. In this paper, however, it is shown that a set of necessary conditions in the small can exist for unconstrained as well as magnitude constrained controls in a locally convex set. The necessary conditions thus derived can be used conveniently to find the optimal control for degenerate hyperbolic distributed-parameter control systems.

  • PDF

ELLIPTIC BIRKHOFF'S BILLIARDS WITH $C^2$-GENERIC GLOBAL PERTURBATIONS

  • Kim, Gwang-Il
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.147-159
    • /
    • 1999
  • Tabanov investigated the global symmetric perturbation of the integrable billiard mapping in the ellipse [3]. He showed the nonintegrability of the Birkhoff billiard in the perturbed domain by proving that the principal separatrices splitting angle is not zero.In this paper, using the exact separatrix map of an one-degree-of freedom Hamiltoniam system with time periodic perturbation, we show the existence the stochastic layer including the uniformly hyperbolic invariant set which implies the nonintegrability near the separatrices of a Birkhoff's billiard in the domain bounded by $C^2$ convex simple curve constructed by the generic global perturbation of the ellipse.

  • PDF