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ABSTRACT

The degenerate case of multivariable hyperbolic
distributed-parameter systems (systems of hyperbolic partial
differential equations) in time coordinate t and space
coordirate x is characterized by a property that all the
characteristic curves of the state equations are parallel to the
coordinate axes of independent variables. It is a disturbing
fact, although not well known, that the so-called maximum
principle as applied to these systems does not exist for the
control that depend on time alone.

In this paper, however, it is shown that a set of necessary
conditions in the small can exist for unconstrained as well as
magnitude constrained controls in a locally convex set. The
necessary conditions thus derived can be used conveniently to
find the optimal control for degenerate hyperbolic distributed-

parameter control systems.

1. STATEMENT OF THE PROBLEM

We consider a process described by the following system
of degenerate first-order hyperbolic partial differential
equations [PDE's] in two independent variables, time t and

position x :

av,
= filt,x, v(t, x),u®)], (@(=1,2,¢+n) (¢))
adc
av;
= f{t, x, v(t, x), u(®], (@ =n+l,n+2,++, N)
dx

wl;ere the N-component vector v(t, x) = [v, (tx), v, (t, X),
er, vy (t, X)]" (where superscript prime denotes transpose)
describes the state of the process on a fixed domain TXS =
[0, 6] x[0,x]; u®) = [u,(1), ut), ==, v (O] is the m-
dimensional control on TXS ; f = [f, f,, *+-, fy]' is a
specified N-dimensional vector whose components f, (t, x, v,
u) (=1, 2+« N), are bounded piecewise continuous
functions of t and x and are twice continuously differentiable

with respect to v and u. The following initial data are

specified:
v, (0,x) = @,[x], (i=1,2,+++,n)
v,(,0) = ¥,[t], (@=n+l,n+2, - N) @

where the functions @, are piecewise continuous in x and

¥, are piecewise continuous in t. Let the functional J

given by

7 (u) =I F, [x, ¥ @, x)] dx
S

+J' F,[t, v (t, x,)] dt
T

+ F, [t, x, v (t, x), u(t)] dt dx 3)
LI



be a measure of performance of the process. InJ, ¥ (t, x)
denotes the n-vector consisting of the first n-components v,
(t, x), v, (1, X), **-, v (t, x) of v and \7(t, x) is the column
vector [v,,; (t.X), v,,, {1, X), ***, vy (t, )" ; the integrands F,
F, and F, are bounded piecewise continuous functions of x,
and

t (t, x), respectively, and are twice continuously

differentiable with respect to the remaining arguments. The
optimal control problem is to find a piecewise continuous
function u(t) so as to maximize the functional J subject to the
state equations (1) and (2). In general, it is necessary to
assume that the control u(t) belongs to a certain admissible
control region U,. We will now define this control region.
The region of admissible controls U, is the set of all
bounded and piecewise continuous functions u(t) on T such
thatu(t) : T-> 2, where (2, is an arbitrary subset of R™
For this problem, it was falsely conjectured that the
maximum principle would apply.  That is, if u*(t) is the
optimal control (v¥ and A * corresponding v and A ), then

1G]

should be maximum where H is the usual Hamiltonian

L H (¢, x, v¥, u*, A*)dx

function for the system. This maximum principle approach
has been provn to be wrong.

The maximum principle, however, can be replaced by
conditions which are locally valid and therefore termed
"necessary optimality conditions in the small.” We now
derive these conditions.

In this derivation, it is necessary to ensure that the optimal

"

control vector u*(t) can be enclosed in some " sufficiently

rich” family of nearby trajectories which are admissible. We

will ensure this by assuming that (2, is locally convex.

u

Thus the following admissible control space U, is specified.

Definition 1 : The control region U, is the set of all bounded
and piecewise continuous functions u T — Qu < R™,
where (2, is everywhere locally convex with respect to the
absolute-value metric, é'n] | 9 ®-u, () |, defined on any

i
two points 0 and uin R™.
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The local convexity requirement of €2, implies that for

every u(t) € U, there existsa number 0 > 0 and u (1) €
m

U, such that 21 | T@® - w@ | <p implies (u+ @
i=

wye€ U, 056 £1.

This requirement is not
satisfied only by very limited control sets which, for example,
consist of isolated points of R™  Most practical problems,
however, do satisfy this requirment.

Now, in order to state and prove the optimality conditions
for u(t), we require the defining Hamiltonian function to be
differentiable with respect to u.  Therefore we assume that

the problem (1) - (3) satisfies the following conditions.

Condition 1 : Forgiven v € V, u € U, the functions f.(,
X,v,u) (i=1,2, +»« N), are piecewise continuous in t and
x on TXS ; for any (1, x) € TXS, fs are twice continuously

differentiable with respectto v and u on V x U,

Condition 2 : F, (1, x, v, u) satisfies smoothness criterion

analogous to Condition 1.

2 HAMILTONIAN FUNCTION AND CO-STATE
SYSTEM

We difine the Hamiltonian function of the system (1) - (3) :

N

H(, x,v,u, A) = Fy(t,x,v,u) + 2 At %)
i=1

fi(t, x, v, u) S

where the N-dimensional A (t, x), known as the co-state

vector, is governed by the following system of PDE's :

3 A, dH 3F, af,
= - = - -2 A, ,
at av, av, k=t av,
(i=1,2,+n)
aAa, dH JF, N af,
= - = - -2 A, ,
ax av, dv, ¥l gy,

(i =n+1,n+2, *«» N) (6)



with final and boundary conditions given by

3 F,[x, ¥, )]
A‘i(tf) X)=_ .,
avit, x)

i=1,2n

9

AL,V (1, x)]
Ax) =

, (i=n+l,n+2,+- N)

avt, x)

3. NECESSARY OPTIMALITY CONDITIONS

Now let v* and A* € V be the solutions of equations
(1) - (2) and (6) - (7), respectively, corresponding to an

admissible control u*(t) € U. Then we have

Theorem 1 (The Optimality Condition in the Small)
If u*(t) maximizes J in equation (3), there exists an Q-
neighbourhood of u* in U, denoted Cy( ), such that for all

ue Cla) C U,

J

oH

%w»wm- dx < 0

Ay l(tx,v*,u*, A %)

(3)

almost everywhere on T, where

m
Cf{a)={u:u€U;2 g -v*®| < a, t€T;
i1

a > 0} &)

Theorem 2  (Optimality Conditions in the Small for
Magnitude Constraints)

Let the space of admissible controls be defined by

U, = {[u,®), 40, o 0] sy < u® <ol
u,(t) are bounded and piecewise continuous functions on T,
G = 1,2, +»-, m)} where u, and u® are (2m) specified

constants. Then if u*(t) € U, maximizes J in equation (3),

GH [t x, v¥, u*(t), 1*] (10)

J dx = 0 for aa t€T®
$ 3,

<0 for aa t€TY
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>0 for aa t€TY
T® = {t:t€T, y_ <ux® < u’,}
T® = {t:t€T, w0 =y} an
TP = (1:t €T, uh) = v’}

for k =1,2, ¢, m Simply stated, the integrated
Hamiltonian, J. H[t, x, v¥, u*(t), A *]dx, must be stationary
in u¥ if u*k(i) lies in the interior of the admissible region
and must attain a local maximum in u, at u¥ if u* isatthe

boundary of the admissible set.
4. PROOF OF THE THEOREMS

Proof of Theorem 1 The theorem is proved by

contradiction, that is, we assume the theorem is false. This
assumption allows us to construct a conwol u'(t) € U, such

that J(u’) > J(u*), thus contradicting the optimality of u*.

Consider the neighbourhood Cy(8) C U, of u*(1)
defined by
m
C(S)=(u:v€U,; Zly®-u*n!| £ &, t €T}
=1
(1

In view of the local convexity of U,, there is at least one &,

2)

> 0 for which Ci(& ,) is a convex set. Then it follows that
for any number, p € (0, &), the set Ci( o) is also convex.

If the theorem is false, for every p > 0, there exists at
least one U € Cy( o) and a closed subinterval T,(u, p) E T
such that

3 mo - vl - [ — &> p @ p)
i=1

$9u Le, x, v¥, u¥, A%) (13)

almost everywhere on T,@ , o) where p(u, p)> Oisa
number dependent upon u and ©. Let us define a new
control u'(t) by :

uk() + E[UO - v, t € T, p) (14)

, t& T, p)



where 0 < & < lis aconstant. Clearly from equations
(12) and (14), u' € C(& p) where C,(& p) is the convex
neighbourhood of u* of radius & o and is obtained from
Ci(J) by substituting & p in place of &. We shall now
show that for some & p > 0, u' yields a value of J higher
than J(u*). If we carry out the calculation, we have

Jh - Jw®) =J' J H(t, x, v, u', A7) - H(t, x, v¥, u*, A%)]
SJr

cdudx + #* 15)
when 7 * is the remainder term that can be estimated by
7| < Loj ['[rzu'f‘dt +JJ T fdt dx}? dx
S ST
+ LOJ {J' 7 Fdx +JS J Zfdt dx)? de
T Y8 T
+

LOJ J' {J mfa + BFax i};zuf dt dx)
SYTT S
. {J'Tzﬁ dt + Z5,fdx i JT Zfdt dx

+ B,g)dt dx (16)

In (16), 0 < L, < oo is aconstant and the quantities

&R.f 5. 5 fand X, g are defined by
| £.06 %, v¥, u') - £t x, v¥, u*) |
[ £, x, v, u') - £(t, x, v¥, u*) |

N
Lf = 2| fx, vk u') - f(t,x, v, u¥) |
i=1

N |OH @ x, viul, A% GH (L, x, v*, u*, 1*)
2

Xg
i=1 av,

av,

Qan
Since f; and dH / 3v, are continuously differentiable with
respect to u, they satisfy the Lipschitz condition in u. Thus

(17) yields

LB B BeSL S W0 0] a8
i=1
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almost everywhere on T, where 0 < L, < oo is a finite

constant. In view of the definition of u' from (14), we have

=i, B BE TS Les 63 | 50-uk0 |

tE€ T, p)

S T, p)
(19)

=0

m

Since U € Cyp), we have ZI aw - v | £ p.
1=

Then from (19), we have

TEESE Bt Bg <L, & p for t € T,@, p)

= 0 for t &€ T,(m, p) 20)
Finally from (16) and (20), we get
| 71 £ Ly €20 (@, p)+ £°@, p)} 21

where 0 £ L; < oo is a constant independent of u, o and
&; u(u, p)=Measure of T(u, p), u« > 0.

We expand H in a Taylor series about (t, x, v¥, u*, A*) and
obtain:

H(t, x, v¥, ul, A%) - H(t, x, v, u*, A% = g‘ (e, - u* @]
i=1

JH 22)
+7'
@, x, v¥, u*, A%)

v,
where
HI[Lx, v, u* + 04 -u¥), A*]

m
7' =2 @ -u*)-
i=1

:

adv,

JHIt, x, v¥, u*, %]

- —_— ](23)

du,
and 0 < o4t < 1 is an integrable function on T. Due to
the Lipschitz condition on dH/ dv,, equation (23) yields
7] S L2 T -un] p @4)
where 0 < L:=<1 ©0 is aconstant. In view of equation
(14), and the definition of Ci( p ), the above inequality yields :
| 7| £ Ly £€*p? for almostall t € T,, p)
=0 t € T, p)
Now equations (22) - (23) may be substituted into (25) to

for (25)

yield



m aH
Jwh - I = 2 Wkl —

ST 1= dvy,

(t, x, v¥, u*, A*)

~dtdx+j
S

j 7'dtdx + 7*
T

i aH

zj [0 - u% ) —

S9T i) av,

dtdx
(tx,v¥,u*, L *)

_LJT| 7' ldeds - 7] @6)

which in view of equation (14) and subsequently inequalities

(13), (21) and (25) yields :

m aH
J') - 3w 2UT & 2 G0 - w0 —

¢ 1= duy,

t x, v¥, u*, A %)

-dtdx~LJT| 7' | dudx- | 7+ |
>Loe - Y, p)dt-_[s JTo L, &*p?dedx

- Ly g2pt(u@, p) + 4@, p))
>EY@ p) u, p)-L 707 u(, p)

+ 1@, )} 27

where L, = Max (L, * x;, L5}, 0 < I, <oo. Here xis
the length of the interval S. We note that L, is independent of
&, pandu. Nowthatforall o> 0Oand u & Cyp)the
quantities Y and & are bounded positive functions, we can
choose some & > 0 for which the right-hand side of the last
inequality in (27) becomes posiiive. Thus for some , & >
0, weobtain J(u', w,z) > J(u*, w,z)forall v € Cy& p).
But this is a contradiction to the fact that u* is the max-
optimal control of J.  Therefore by setting @ = & p, we
have proved that there exists an @ -neighbourhood Cy(a) €
U, of u* for which the theorem is true. (Q.E.D)

Proof of Theorem 2 Consider a small neighbourhood,

Cya), of u*(t) such that for every u(t) € C,(a), the
inequality (8) in Theorem 1 ia satisfied. Now since the
control U(t) defined by

?‘(t) = [u*](t)’ u¥ (1), e, u*, ), (), u*k+|(t)1 b “*m(t)]l (28)

also belongs to Cy«), from inequality (8) we obtain the
following by replacing u by U:
dH

(o) - uw*®]*) —
S du,

dx <0 (29)
(@t x, v¥, u*, %)

almost everywhere on T.
In view of the definition of T,*, the quantity [u(t) -

u*,(t)] may be either positive or negative, therefore on T,*,

dH
dx must vanish if (29) is to be

03yl @ x veu* A7)

satisfied.
Also on T,®, we have u* (t) = u, ; therefore [u,(t) - u* (1))
can only assume positive values so that in inequality (29),

JdH

S Ay,

dx must be nonpositive.
(t, x, v¥, u¥, A*)

Similarly on T,®, the admissible control variations [ut) -

u* ()] can only take negative values thus proving that

dH
—— dx must be non-negative quantity if (29) is to be
$ Ju,

satisfied. (Q.E.D.)

5. ILLUSTRATIVE EXAMPLE

Consider a system governed by the degenerate hyper-

bolic equations

av,
— =-v,, v(0,x)=0
at
av,
=u) , v,(t,0) = 0 30)
ax

It is required to obtain the scalar piecewise continuous
fanction u(), 1 < u(®) < 5, t € [0,10], that gives the

maximum value to
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1010
= j J (-2v, - 4.5v,2 + v?) dt dx (31)
070

The hamiltonian function and the co-state variables for

this system are given by

H=2v, 4502+ - A,v, + A,u (32)
dA,

=2 . A0,%) =0
at
aa,

=%y, + A, ALD =0 33)
dx

Now corresponding to the solution v (t, X) = - X 'J.tu(t) dt,
vy(t, x) = u(t) - x of the state equations, the solution of (33)
is given by
A, %) = -2(10-0) (34)
A Lx) =450 - Du®) - 2(x - 10 - 1)

Thus from equation (32) and (34), we have

19 H 1
—dx = 2u(t) + J A, dx
09y 0
= 2u()) + {-3u@® + (10-v)}

-u(®) + (10 -1) @35)

In view of Theorem 2, we may argue as follows :

1 dH
——dx <0, therefore
0 Jdu

u(t) = 5 cannot be a part of the optimal control for t > 5.

(@) For t > 5: u® =35 gives J‘

1 dH
(ii) For t<9: u=1 gives J ——dx > O,therefore u=1 is
03u

not part of the optimal control for t < 9.

1 dH
(iii) The stationary condition J — dx = 0 yields u(t) =
03
10 - t, which fort < Sand t > 9 calls for a control policy
which is outside the admissible region, [1, 5]. Therefore, the

stationary condition does not hold for t <5 or t > 9.

Clearly the only control policy which does satisfy

Theorem 2 is
5 t<5
u¥(t) =| 10 - t 5t<9 (36)
1 t>9

and therefore must be optimal. This is really the case.
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