Bull. Korean Math. Soc. 36 (1999), No. 1, pp. 147-159

ELLIPTIC BIRKHOFF’S BILLIARDS WITH
C?-GENERIC GLOBAL PERTURBATIONS

Gwang IL Kmim

ABSTRACT. Tabanov investigated the global symmetric perturba-
tion of the integrable billiard mapping in the ellipse [3]. He showed
the nonintegrability of the Birkhoff billiard in the perturbed domain
by proving that the principal separatrices splitting angle is not zero.
In this paper, using the ezact separatriz map of an one-degree-of-
freedom Hamiltonian system with time periodic perturbation, we
show the existence the stochastic layer including the uniformly hy-
perbolic invariant set which implies the nonintegrability near the
separatrices of a Birkhoff’s billiard in the domain bounded by a C?
convex simple curve constructed by the generic global perturbation
of the ellipse.

1. Introduction

A dynamical system defined by the free motion of a point in some
domain 2 of the plane bounded by an analytic closed convex curve
09, is called a Birkhoff’s billiard {1,2]. The point follows a straight
line path with unit velocity inside the domain and reflects from the
boundary according to the law “angle of incidence is equal to the angle
of reflection”.

It is believed that the ellipse is the only example of the boundary
of the domain on which the billiard mapping is integrable in the plane.
So, a class of Birkhoff’s billiards with the C? convex boundary close
to the ellipse may be not integrable. Donnay (unpublished) has con-
sidered the local analytic perturbations of the ellipse and proved the
analogous theorem on the separatrices splitting of the corresponding
billiard mapping.
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Tabanov has proved a theorem on the nonintegrability of the Birkh-
off ’s billiard in a special domain with the global symmetric perturbation
for the ellipse and established the asymptotic formulas for the separa-
trices splitting angle for the Birkhoff’s billiard [3].

In this paper we investigate the Birkhoff’s billiard in a special do-
main, bounded by a C? closed convex curve constructed by the per-
turbation of the ellipse. But our work is devoted to the generic global
perturbations of the ellipse without the restriction of symmetry to the
perturbations.

In this work, applying the twist map theory to the billiard map and
using Moser’s theorem [4], we will prove that the billiard map is iden-
tified to the time-one-map of the one-degree-of-freedom time periodic
Hamiltonian flow, particularly, the perturbed elliptic billiard map (the
unperturbed elliptic billiard map) is identified to the time-one-map of
the time periodic (integrable) Hamiltonian flow with hyperbolic peri-
odic orbit respectively. Furthermore, using the theory of exact separa-
trix map of the one-degree-of-freedom Hamiltonian system with time-
periodic perturbation [5], we will prove a more general theorem on the
separatrices splitting of the billiard map than that of Tabanov’s.

We now outline this paper. In section 2, we show that the Birkhoff’s
billiard map is an exact symplectic monotone twist (ESMT) map. In
section 3, we introduce Moser’s theorem for an ESMT map and show the
perturbed elliptic billiard map is identified to the time-one-map of the
Hamiltonian flow with time-periodic perturbation. Using the theory of
an exact separatrix map, we prove that the separatrices splitting angle
is not zero. In section 4, we conclude our results.

2. Billiard map and its properties

Let § = % be the circle with unit circumference, i.e., S is the interval
[0,1] with 1 and 0 identified. Let T = S x [0, 1] be the standard annulus.
We will be studying a diffeomorphism of T to itself, so called billiard
map, however it will be easier to state the results if we have a global
coordinate system. So let A =R x [0,1]. Then A is the universal cover
of T with natural projection ¢ : A — T which sends (z,y) and (z+
r,y) € A to the same point in 7" whenever r € Z.
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Now, we consider an area preserving, orientation preserving and
boundary components preserving C*'-diffeomorphism f : A — A satis-

fying

(2.1) flz+1,y)= f(z,y)+(1,0) forany (z,9)€ A
(2.2) m1(f(0,0)) € [0,1), where mi(z,y)=1=z

We say f : A — A is an ezact symplectic map if f is symplectic
with respect to the usual symplectic structure and for any embedding
v : R — A satisfying Vo, v(z + 1) = v(z) + (1,0) and second argument
coordinate function 73 : (z,y) — y, we have

1 1
| ) SmaN) ds = [ mals or(6) 2 m(s o)) ds.

In two dimensional case, the condition that f be symplectic is the
same as requiring that f be area preserving, i.e., |Df| = 1. Farthermore
the condition that f be exact symplectic adds to the area preservation
a condition saying that the net area between a nontrivial loop on T
and its image under f is zero. In 2-d case for an area preserving map
f: A — A, this condition is satisfied automatically.

DEFINITION 2.1. A map f: A — A is called a monotone twist map
if there exists € > 0 such that for all (z,y) € A

T @)l > e

In twist map theory, we say that a twist map f : A — A has a gener-
ating function G : B — Rif for B = {(z,2') € R? : {f(z,y) : y € [0,1]}
NA{{",y) 1y € [0, 1]} # ¢},

_ _0G(z,5') , 0G(z,x") . ron
y= ax Yy = 3:12' lmphes ("E?y)-f(x,y)'

In studying dynamics of Birkhoff’s billiard, we usually use the Birkh-
off coordinate (s,8). the bounce position is measured by the arc-length
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s along the boundary from a given point. The direction of motion is
measured by the angle § between a tangent to the boundary and the
trajectory. It is easy to see that s'(s,0) is a monotone increasing func-
tion of @ because of the convexity of the boundary. Thus the Birkhoff’s
billiard in Birkhoff coordinate has twist. In fact, s is an anglelike coor-
dinate since the map is periodic with period equal to the perimeter of
the boundary.

In our work, for convenience we use the canonical Birkhoff coordinate
(s,cos#). With this coordinate we prove the next lemma:

LEMMA 2.1. For a given Birkhoff’s billiard, the generating function
of the billiard map f is the function that gives the length between
boundary points at which the point particle bounces successively.

Proof. Let (X,Y) represents rectangular coordinates in the plane
of the billiard. Using the canonical Birkhoff coordinates, we have
(s',cos6’) = f(s,cos0).

Consider

G(s,8") = {[X(s) = X(s")P + [Y(s) - Y ("))},
where (X (s),Y(s)) represents the billiard boundary. Since

- == (Mg ) v
=cosfd, similarly

Ga(s,s') = cosd,

the function G(s,s’) is the generating function of the billiard map f.0J

PRrROPOSITION 2.1. The billiard map f of a Birkhoff’s billiard is an
exact symplectic monotone twist (ESMT) map.

Proof. Let(z,y) = (s,cos6) then, by lemma (2.1), the billiard map
f has a generating function G. So we have

dy' = Godz + Gzzdl" and dy = —-Gidz + -—G12d.’13'.
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This implies that
dy Adz = —Gr2ds’ Adx = Gradz Adz’ = dy' A dz'.

That is, f is symplectic. Moreover, f is an exact symplectic map for
it preserves area. Since an exact symplectic map is monotone twist if
and only if it has a generating function; the billiard map f is an exact
symplectic monotone twist map. a

PROPOSITION 2.2. Let f be a Birkhoff’s billiard map. Then f o f
is also an ESMT map on A.

Proof. For the billiard map f : (s1,cos6;) — (s2,c088;), let G be
the generating function of f. With G we can represent the Jacobian of
f as follows;

=Gnn =1
Df = ( X & )
Gi2 G2
where A = G122 - GnGzz and G,;j = ﬁ‘—
83,;8$j

Furthermore G143, G1; and Gy, are explicitly given by as follows;
__ sin#y sinf,

GIZ - _Ty
s 2
(2.3) Gy = SmGH L _ k(s1)sinéy,
. 20
G22 = SlnG 2 _ Iﬁ)(Sz) sin92

where x(s) is the curvature function at s on the boundary.
Since %’l < k(s;), for i=1,2, we have

G411 and Gy <0 for 0<08; <.
The Jacobian of f o f is given by

D(fof)=DfoDf

_Gu _Gn _ 1
— ( gw C_v'lz) ( CA;’12 812)
G
—_— J22 _— 22
Gi2 G2

Q

12 G2

= (* G121G12v (Gu + Gzz))
3 *

)
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where Gi; = Gi;(s2,53).
From equation (2.3) and the fact that limg, 0 %IL; = —% for ¢ =
1,2 monotonically, there must exist € > 0 such that

|Dy(ma(f o )| = 1571@(@11 L Gm)|>e>0 i A

So, f o f is an exact symplectic monotone twist map on A. |

3. Analysis near the separatrix of the billiard map

In this section, using a theorem of Moser [4], we reduce dynamics
near separatrices of a Birkhoff’s billiard to dynamics near separatrices
in Hamiltonian system. First, we recall that theorem;

THEOREM 3.1. Given an exact symplectic monotone twist (ESMT)
map f : A — A, there exists a Hamiltonian H : A xR — R which
satisfies

(3.1)  Y(z,y,t);H(z +1,y,t) = H(z,y,t) = H(z,y,t + 1)

62
(382)  V(=z,y,t); 3—y2H(z,y,t) >0

such that f is the time one map of the Hamiltonian system given by
H.

Since a one-degree-of-freedom Hamiltonian system with time peri-
odic perturbation generally shows chaotic dynamics near separatrices,
it is extremely difficult to obtain a precise quantitative description of
the properties of dynamics in the stochastic layer near separatrices by
simple numerical integrations of equations of motion due to the com-
plexity of orbit structures. Hence, in the study of separatrix motion,
we have used the separatriz map [6] which is an approximate map of
the energy and the phase describing dynamics near separatrices. But in
this study, rather than working with an approximate separatrix map,
we use a new map more efficient in describing dynamics near separatri-
ces in Hamiltonian system, so called eract separatriz map introduced
by T. Ahn, G. I. Kim and S. Kim [5].
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Now we explain the construction of the exact separatrix map briefly.
For details of this construction, we refer readers to [5]. We consider
one-degree-of-freedom Hamiltonian systems with time-periodic pertur-
bations given by

(3.3) ot (z,¢) € R? x S,

where Ho(z) + H, is an analytic Hamiltonian function, Ho the unper-
turbed Hamiltonian function, H; the small time periodic perturbation,
S! = R/(TZ) the circle of length T', T € R¥, and

0 1
7=(24);
with two assumptions;

(A.1) For Hy = 0, the z component of (3.3) has a heteroclinic orbit
£0(t) to a hyperbolic periodic point o of period 2 for a Poincare section
map of H whose trajectory is called the separatriz.

(A.2) The interior of z%(t) is filled with a family of periodic orbits
z"(t),h < 0 of period T(h) such that Ho(z"(t)) = h for all ¢ and
T'(h) > 0, and that

lim z"(t) = 2°(t), and lim T(h) =oc (See Figure 1).
h—0 h—0

In the full phase space, ¢ corresponds to the periodic orbit vo(t) =
(xo,t + ¢), which is a normally hyperbolic invariant manifold. By the
invariant manifold theorem ~(¢) persists under the perturbation as
v1(t), which has the stable and unstable manifolds.

In order to study the dynamics near the separatrix, let us consider
a section ¥ C R? for the z component of (3.3) which transversally
intersects the separatrix when Hy = 0. Then ¥ x S1 is transversal to
the flow of (3.3) for small enough H;. The full phase space for H; =0
is shown in Figure 2. The transversality of £ x S* to the system (3.3)
and an application of the implicit function theorem yield that (¢,p) is
a sympletic coordinate system of ¥ x S1 since the energy p and the
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time ¢ are canonical variables. Let g(¢; ¢,p) = (z(t), #(¢)) be a solution
of (3.3) with an initial condition (¢,p) € ¥ x S!. Now we define the
return map S called the ezact separatriz map by

S(¢,p) = q(7; ¢,p) T is the first return time,
for the domain D given by

D={(¢,p) e xS:3Ir>0, s.t. g(t;¢,p) € £ x S'}.

In [5], it is proved that § is a symplectic twist map. By lifting S! to
R, we extend S on the whole plane since the extended map is more
convenient for use in the twist map theory. Also in [5], the explicit
functional form of the lifted return map S : R2 — R? generated by the
flow of (3.3) is given by:

¢' = ¢+ N(¢,p) ., [#=90-DN(4,p)
S: A . .
P’=P+M(¢,P) 13=P+M(¢,P),

N(¢,p), N(¢,p), M, and M satisfy
N(Y($)-Y(¢),4) =00, N(0,¢)=00,|M|<<1 and |M]|<<1,

where Y (¢) and Y (¢) are graphs of differentiable functions given by the
intersections of the stable and unstable manifolds of v;(¢) and ¥ x S?!
respectively (See Figure 2).

Alan Weinstein has pointed out that the stable and unstable mani-
folds of the perturbed Hamiltonian system must intersect [7]. By La-
grangian intersection theory [7,8], the perturbed manifolds transversally
intersect for generic perturbation H; [9, 10]. Hence we have Y(¢)~f’(¢)
has simple zeros. We denote the set of simple zeros of Y (¢) — Y () by
A. Let A be the lifted set of 4 on the whole real line. To prove that the
separatrix map has an chaotic invariant set near the separatrices, we

define connected open sets near (ax,0),ar € A as follows (see Figure
3):
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DEFINITION 3.1. For sufficiently large K we choose a sequence
{ar}>=,, such that ax —ag-1 > K and ap € A for all k € N. We
define connected open sets near (ak, 0) for each k, D(ay; K), by

D(a; K) = {(¢,p) : N(¢,p) > K and N(¢,p) > K}.

THEOREM 3.2. For sufficiently large K and any sequence {ay} such
that ar — ay—1 > K and ar € A for all k, there exists a unique orbit
{(¢r,pr)} of S such that (¢x, px) € D(ag; K) for all k.

Proof. See the reference [5]. O

Note that if we take the sequence {ay} arbitrarily random, the cor-
responding orbit {(¢x, px)} should be also arbitrarily random. That is,
theorem (3.2) implies that dynamics near separatrices is chaotic.

DEFINITION 3.2. The projection of the orbits in theorem 3.2 to R X
S* forms an invariant set. We denote this invariant set by Ag.

REMARK 3.1. Let Ag g+ be a subset of Ax obtained by the set of
projections of the orbits corresponding to the sequences {ax} in the-
orem (3.2) with K < |ax — ag—1] < K’. Then Ak k' is a compact
invariant set. In [5], it is proved that Ag g+ is uniformly hyperbolic.
By the definition of uniform hyperbolicity {11] and theorem (3.2), the
separatrices splitting angle is not zero.

Now, we are ready to prove our main theorem.

THEOREM 3.3. For the generic C? convex analytic perturbation of
an ellipse the Birkhoff’s billiard has non zero separatrices splitting.

Proof. Let f, and f, be the unperturbed and perturbed elliptic
Birkhoff’s billiard maps respectively. Then, by proposition (2.2) f,o f,
and f, o f, are ESMT maps. So, By theorem (3.1), there exist an in-
tegrable Hamiltonian Hy ., and a perturbed Hamiltonian H foofp of
which f, o f, and f, o f, are the time one maps of them respectively.:
Since the entire orbit structure of f, o f, in the phase space consists
of the rotational invariant curves (RICs), the hyperbolic fixed point
pr, connected by the heteroclinic loop and the elliptic fixed point pe
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surrounded by a family of invariant curves, Hy, oy, satisfies (A.1) and
(A.2).

Let profp = H¢ o5, + H = Hy o5, + (prof,, - Hqufu)' As the
boundary perturbation is sufficiently small, we have |H;| << 1. Hence
we can apply the ezact separatriz map theory to this perturbed Hamil-
tonian system Hy,os,. By theorem (3.2) and remark (3.1), there exists a
uniform hyperbolic invariant set Ax g’ near the separatrices of Hy oy, ,
which includes chaotic orbits. As mentioned in remark (3.1), the exis-
tence of the uniformly hyperbolic invariant set with chaotic orbits near
separatrices implies that the separatrices splitting angle is not zero. [J

4. Conclusion

Using the theory of ezact separatriz map of an one-degree-of-freedom
Hamiltonian system with time periodic perturbation, we have proved
that the Birkhoff’s billiard in a special domain bounded by the C?
convex simple curve constructed by the generic global perturbation for
the ellipse, has the stochastic layer near the separatrices. Furthermore
in the stochastic layer a uniformly hyperbolic invariant set including
chaotic orbits near separatrices exists. This uniformly hyperbolic in-
variant set has the Smale’s horse shoe-like structure, implying the sep-
aratrices splitting angle of the perturbed elliptic billiard is not zero. As
author knows, from the definition of uniform hyperbolicity [11}, we can
explicitly compute the least bound of the principal separatrices splitting
angle. This explicit computation of the splitting angle will be discussed
in detail elsewhere.
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FIiGURE 1. The unperturbed phase space of the x compo-
nent of (2.1) with the homoclinic orbit z°(t) to a hyperbolic
equilibrium zo and the transversal section ¥ are shown.
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FIGURE 2. The full phase space of (2.1) with a periodic
orbit yo(t) and the section £ x S! are shown when € = 0.
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FIGURE 3. The connected open set D(ax; K) near the
simple zero (ax,0) of Y (#) — Y (#) in the coordinate system
(¢ — ¢,¢' — ¢) is shown.
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