• Title/Summary/Keyword: hydrothermal vein

Search Result 136, Processing Time 0.023 seconds

Occurrence Characteristics and Existing Forms of U-Th Containing Minerals in KAERI Underground Research Tunnel(KURT) Granite (한국원자력연구원 지하처분연구시설(KURT) 화강암의 U-Th 함유광물 산출특성 및 존재형태)

  • Cho, Wan Hyoung;Baik, Min Hoon;Park, Tae-Jin
    • Economic and Environmental Geology
    • /
    • v.50 no.2
    • /
    • pp.117-128
    • /
    • 2017
  • Occurrence characteristics and existing forms of U-Th containing minerals in KURT (KAERI Underground Research Tunnel) granite are investigated to understand long-term behavior of radionuclides in granite considered as a candidate rock for the geological disposal of high-level radioactive waste. KURT granite primarily consists of quartz, feldspar and mica. zircon, REE(Rare Earth Element)-containing monazite and bastnaesite are also identified. Besides, secondary minerals such as sericite, microcline and chlorite including quartz vein and calcite vein are observed. These minerals are presumed to be accompanied by a post-hydrothermal process. U-Th containing minerals are mainly observed at the boundaries of quartz, feldspar and mica, mostly less than $30{\mu}m$ in size. Quantitative analysis results using EPMA (Electron Probe Micro-Analyzer) show that 74.2 ~ 96.5% of the U-Th containing minerals consist of $UO_2$ (3.39 ~ 33.19 wt.%), $ThO_2$ (41.61 ~ 50.24 wt.%) and $SiO_2$ (15.43 ~ 18.60 wt.%). Chemical structure of the minerals calculated using EPMA quantitative analysis shows that the U-Th minerals are silicate minerals determined as thorite and uranothorite. The U-Th containing silicate minerals are formed by a magmatic and hydrothermal process. Therefore, KURT granite formed by a magmatic differentiation is accompanied by an alteration and replacement owing to a hydrothermal process. U-Th containing silicate minerals in KURT granite are estimated to be recrystallized by geochemical factors and parameters such as temperature, pressure and pH owing to the hydrothermal process. By repeated dissolution/precipitation during the recrystallization process, U-Th containing silicate minerals such as thorite and uranothorite are formed according to the variation in the concentrated amount of U and Th.

Fluid Inclusions of Granitoids and their Bearing on Mineralization in South Korea

  • Tetsuya, Shoji;Than, Zaw
    • Economic and Environmental Geology
    • /
    • v.23 no.2
    • /
    • pp.127-133
    • /
    • 1990
  • Relation between fluid inclusions and mineralization has been studied for 30 granitoid specimens from 19 localities in South Korea. Polyphase inclusions are found in granitoid specimens of 9 localities. In the vicinities of 6 localities among them occurs any of W, Cu or Fe deposits of the vein-, stockwork-, skarn-or pegmatite-type. On the contrary, no ore deposit is reported near the granitoids characterized by no polyphase inclusion except only one locality. This fact implies that the occurrence of polyphase inclusions is a good indicator for such kinds of mineralization. Ores and country rocks of some of the deposits contain polyphase inclusions in their quartz crystals. The fact that many polyphase inclusions occur in granitoids and ore constituents suggests that highly saline hydrothermal solution played an important role for the formation of such kinds of deposits. On the contrary, the granite and the ore of the Mugug gold deposit have many fluid inclusions, but are free from the polyphase type.

  • PDF

Mesozoic Granitoids and Associated Gold-Silver Mineralization in Korea (한국 중생대 화강암류와 이에 수반된 금-은광화작용)

  • 최선규;박상준;최상훈;신홍자
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.25-38
    • /
    • 2001
  • Contrasts in the style of the gold-silver mineralization in geologic and tectonic settings in Korea, together with radiometric age data, reflect the genetically different nature of hydrothermal activities, coinciding with the emplacement age and depth of Mesozoic magmatic activities. It represents a clear distinction between the plutonic settings of the Jurassic Daebo orogeny and the subvolcanic environments of the Cretaceous Bulgugsa igneous activities. During the Daebo igneous activities (about 200-130 Ma) coincident with orogenic time, gold mineralization took place between 197 and 127 Ma. The Jurassic deposits commonly show several characteristics: prominent association with pegmatites, low Ag/Au ratios in the ore-concentrating parts, massive vein morphology and a distinctively simple mineralogy including Fe-rich sphalerite, galena, chalcopyrite, Au-rich eIectrum. pyrrhotite and/or pyrite. During the Bulgugsa igneous activities (120-60 Ma), the precious-metal deposits are generally characterized by such features as complex vein morphology, medium to high AgiAu ratios in the ore concentrates, and abundance of ore minerals including base-metal sulfides, Ag sulfides, native silver, Ag sulfosalts and Ag tellurides. Vein morphology, mineralogical, fluid inclusion and stable isotope results indicate the diverse genetic natures of hydrothermal systems. The Jurassic Au-dominant deposits were formed at the relatively high temperature (about 300 to 450$^{\circ}$C) and deep-crustal level (>3.0 kb) from the hydrothermal fluids containing more amounts of magmatic waters (3180; 5-10 %0). It can be explained by the dominant ore-depositing mechanisms as CO2 boiling and sulfidation, suggestive of hypo/mesothermal environments. In contrast, mineralization of the Cretaceous Au-Ag type (108-71 Ma) and Agdominant type (98-71 Ma) occurred at relatively low temperature (about 200 to 350$^{\circ}$C) and shallow-crustal level «1.0 kb) from the ore-fonning fluids containing more amounts of less-evolved meteoric waters (15180; -10-5%0). These characteristics of the Cretaceous precious-metal deposits can be attributed to the complexities in the ore-precipitating mechanisms (mixing, boiling, cooling), suggestive of epilmesothermal environments. Therefore, the differences of the emplacement depth between the Daebo and the Bulgugsa igneous activities directly influence the unique temporal and spatial association of the deposit type.

  • PDF

Hydrothermal Gold Mineralization of the Sambo Deposit in the Muan Area, Korea (무안 지역, 삼보 광상의 금광화작용)

  • Pak, Sang-Joon;Choi, Seon-Gyu
    • Economic and Environmental Geology
    • /
    • v.41 no.3
    • /
    • pp.275-286
    • /
    • 2008
  • The Sambo gold deposit located nearby the Cretaceous Hampyeong basin is composed of gold quartz fine vein(the Jija vein) within Cretaceous rhyolite showing $N10{\sim}20W$ trends as well as $N5{\sim}10E$ trending quartz veins(the Pungja, Gwangsan and Pungjaji veins) in Precambrian gneiss. The gold vein typically displays the intermittent and irregular fine veins within rhyolite. Electrum is disseminated in wallrock along the fine cracks as well as coexists with hematite replacing pyrite. Ore-forming fluids from the mineralized vein($H_2O/-NaCl$ system, Th; $340{\sim}200^{\circ}C$, Salinity <2.7 eq. wt.% NaCl) and NE-trending veins($H_2O-NaCl/-CO_2$ system, Th; $400{\sim}190^{\circ}C$, salinity <7.9 eq. wt.% NaCl) are featured by dissimilar physicochemical conditions but their fluid evolution trends(boiling and mixing) are similar with each other. Gold veins of the Sambo deposit filled along NNW-trending tension crack are related to pull-apart basin evolution. Selective gold mineralization of the deposit reflect to dissimilarity between two ore-forming fluid sources. Consequently, gold veining of the Sambo deposit formed at shallow-crustal level and could be categorized into epithermal-type gold deposit related to tensional fractures filling triggered by Cretaceous geodynamics.

Hydrothermal Alteration and Mineralogy of Alunite and Kaolinite in the Ogmae Deposit, Southwest Jeonnam (전남(全南) 옥매산광상(玉埋山鑛床)의 열수변질작용(熱水變質作用) 및 광석광물(鑛石鑛物)에 대한 광물학적(鑛物學的) 연구)

  • Kim, Young Hee;Moon, Hi-Soo;Kim, Jong Hwan;You, Jang Han;Kim, In Joon
    • Economic and Environmental Geology
    • /
    • v.23 no.3
    • /
    • pp.287-308
    • /
    • 1990
  • The Ogmae alunite-kaolinite deposit occurs in acidic tuff, the Hwangsan Tuff, of upper Crataceous age in the Haenam volcanic field, SW Jeonnam. This deposit characterized by advanced argillic alteration formed $71.8{\pm}2.8{\sim}73.9{\pm}2.8$ Ma ago in very shallow depth environment with acid-sulfate solution. Wallrock alteration can be classified into four zones from the center to the margin of the deposit: alunite, kaolinite, illite, and silicified zone. The mineral assemblage in the alunite zone, ore zone, is alunite-quartz-pyritekaolinite. Consideration of stability relation of these minerals suggests that the maximum alteration temperature is estimated at about $250^{\circ}C$ with solution pH of 3 or below assuming that pressure does not exceed 0.3 Kb. Alunite occurs as two different types; replacement and vein-type deposit. The former one consists of fine grained alunite and the later one coarse grained and relatively pure alunite that formed by open space filling. Isomorphous substitution of Na for K in these two types of alunites range 0 to 40 %, indicating that Na/K ratio in the solution is spontaneously changed during the alteration process. Alunite which has higher Na substitution probably formed in an earlier stage while the solution sustain high Na/K ratio. K-Ar age of alunites indicate that the replacement alunite formed earlier($73.9{\pm}2.8Ma$) than the vein-type alunite($71.8{\pm}2.8Ma$). The ${\delta}^{34}S$ value of pyrite and alunite indicate that those minerals formed at isotopically nonequillibrium state. The ${\delta}^{16}O$ and ${\delta}D$ values, of kaolintics 5.0 to 9.0‰ and -54 to -99‰, respectively, indicate that those are formed by hydrothermal solution having magmatic origin which have been diluted by low ${\delta}D$ meteoric water.

  • PDF

Ore Minerals and Genetic Environments of Quartz Veins from the Hwawon Area, Haenam, Korea (전남 화원일대의 석영맥에서 산출되는 광석광물과 이의 생성환경)

  • Yoo, Bong-Chul;Oh, Jin-Yong;Kang, Heung-Suk;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.39 no.5 s.180
    • /
    • pp.583-595
    • /
    • 2006
  • Quartz veins from the Hwawon area are an epithermal quartz vein that is filling the fault zone within Precambrian metasedimentary rocks and Jurassic granite. Mineralization can be divided into hypogene and supergene stages. Hypogene stage is associated with hydrothermal alteration minerals(propylitic and argillic zones) such as epidote, chlorite, illite, sericite and sulfides such as pyrite, sphalerite, chalcopyrite, galena, bornite, cubanite, argentian tetrahedrite, Pb-Ag-S system and Pb-Te-S system. Supergene stage is composed of Fe-Mn oxide, Zn-Fe oxide and Pb oxide. Fluid inclusion data indicate that homogenization temperatures and salinity of hypogene stage range from $291.2^{\circ}C$ to $397.3^{\circ}C$ and from 0.0 to 9.3 wt.% eq. NaCl, respectively. It suggests that ore forming fluids were cooled and diluted with the mixing of meteoric water. Oxygen($-0.7{\sim}3.5%_{\circ}$(white quartz: $-0.7{\sim}3.5%_{\circ}$, transparent quartz: $2.4%_{\circ}$)) and hydrogen($-70{\sim}55%_{\circ}$(white quartz: $-70{\sim}55%_{\circ}$, transparent quartz: $-62%_{\circ}$)) isotopic composition indicates that hydrothermal fluids were derived from magmatic and evolved by mixing with meteoric water during mineralization.

Cretaceous Epithermal Au-Ag Mineralization in the Muju-Yeongam District (Sulcheon Mineralized Area), Republic of Korea (한반도(韓半島) 무주(茂朱)-영암(靈岩)지역 백악기(白堊紀) 천열수(淺熱水) 금(金)-은(銀) 광화작용(鑛化作用) 연구(설천(雪川)지역 광화대(鑛化帶)))

  • So, Chil-Sup;Yun, Seong-Taek;Choi, Sang-Hoon;Kim, Se-Hyun;Kim, Moon-Young
    • Economic and Environmental Geology
    • /
    • v.25 no.2
    • /
    • pp.115-131
    • /
    • 1992
  • Late Cretaceous (90.5 Ma), epithermal gold-silver vein mineralization of the Weolseong and Samchang mines in the Sulcheon area, 60 km southeast of Taejeon, can be separated into two distinct stages (I and II) during which fault-related fissures in Precambrian gneiss and Cretaceous (102 Ma) porphyritic granite were filled. Fluid inclusion and mineralogical data suggest that quartz-sulfide-electrum-argentite-forming stage I evolved from initial high temperatures $({\approx}340^{\circ}C})$ to later lower temperatures $({\approx}140^{\circ}C})$ at shallow depths of about 400 to 700 m. Ore fluid salinities were in the range between 0.2 and 6.6 wt. % eq. NaCl. A simple statistic model for fluid-fluid mixing indicates that the mixing ratio (the volumetric ratio between deep hydrothermal fluids and meteoric water) systematically decreased with time. Gold-silver deposition occurred at temperatures of $230{\pm}40^{\circ}C$ mainly as a result of progressive cooling of ore-forming fluids through mixing with less-evolved meteoric waters. Measured and calculated hydrogen and oxygen isotope values of hydrothermal fluids indicate meteoric water dominance, approaching unexchanged meteoric water values. The geologic, mineralogic, and geochemical data from the Weolseong and Samchang mines are similar to those from other Korean epithermal gold-silver vein deposits.

  • PDF

A Regional Study for Developments of Kyeongnam Copper Metallogenic Province (경남지구(慶南地區) 동광상(銅鑛床)의 종합개발(綜合開發)에 관(關)한 조사연구(調査硏究))

  • Kim, Sun Uk
    • Economic and Environmental Geology
    • /
    • v.6 no.3
    • /
    • pp.133-170
    • /
    • 1973
  • The metamorphosed belt on cherty and andesitic rocks of the Gyeongnam province area has been well known as the most important copper matallogenetic province in Korea and locally has been investigated by several geologists. This report is summarized about geology, occurrence of ore deposits, the study of the present status of mine developments and exploitations and the suggestions of future proposed of copper mine developments and harmoniously and reseonably planning of demands and supply of copper ore. For convenience of study the writer divided the survey region as 4 areas, according to the conditions of mine location. They are (1) Goseong copper area (2) Gunbuk-Haman copper area (3) Masan-Changwon copper area (4) Tongrae-Ilgwang copper area. The geology of the above 4 areas consits of Cretaceous Gyongsang System, which is divided into Silla series, Nakdong Series and Bulguksa Series. The former has intrusive and extrusive andesite and sedimentary formation, and the latter has dioritic and hornblende granite. Ore deposits which is mostly vein types are confined mostly in the andesite and cherty rocks of Silla and Nakdong Series. It is observed slight hydrothermal alteration, i. e. propylitization, chloritization, saussuritization and silicification. It seems that the ore was formed by hydrothermal solution and secondary enrichement. The ore minerals are mainly chalcopyrite and pyrite, with small amounts of malachite, azurite, chalcocite, cuprite, galena, and sphalerite, magnetite, tetrahedrite and etc.. The efficient plan of copper mine developments in surveyed region are as following; (a) Gyeongnam Copper districts are divided in 4 area as mentioned above. (b) Each area would be likely developed as group-working as one unit. For the sufficiently supplying a demand of electric copper, the importations of high grade copper ore in foreign country are invitable at present status of copper mine developments and exploitations.

  • PDF

Occurrence of Gold Deposits of the Tumbang Lapan Area of the Middle Kalimantan, Indonesia (인도네시아 중부 칼리만탄 뚬방라판 지역 금광상의 산상)

  • Kim In-Joon
    • Economic and Environmental Geology
    • /
    • v.38 no.3 s.172
    • /
    • pp.347-353
    • /
    • 2005
  • The geology of the Tumbang Lapan area consists of Permian to Carboniferous metamorphic rocks, Cretaceous granitic rocks, and Permian to Tertiary sedimentary and volcanic rocks. Three faults are developed in surveyed area, and are functioned as channels of the hydrothermal solution which farmed quartz veins within tuff3. In the mineralized area, argillic and propylitic alterations are dominant. Argillic altered rocks show the alteration mineral assemblages of kaolinte+sericite+quartz+chlorite+pyrite. Mineral association in propylitic alteration is chlorite+epidote+feldspar+quartz+pyrite+ magnetite. Vein type, fracture filling, stockwork are observed in survey area. As a result of analysis of samples from quartz veins and altered rocks, some mineralized rocks showed $0.01\~4.6g/t$ of gold.

Chalcopyrite Disease in Sphalerite: A Case of the Soowang Ore Deposits in Muju, Republic of Korea (무주 수왕광산에서 산출되는 섬아연석의 황동석 병변에 관한 연구)

  • Youn, Seok-Tai
    • Journal of the Korean earth science society
    • /
    • v.29 no.7
    • /
    • pp.551-558
    • /
    • 2008
  • The Soowang deposits occur in the quartz veins that were filled fissures in the middle Cretaceous porphyritic granite and/or the Precambrian Sobaegsan gneiss complex. Paragenetic studies suggest that the vein filling can be divided into four identifiable stages. Sphalerites were deposited by the cooling fluids at stages I, II, and III. The results of microscopic observation and EPMA analysis suggest that the chalcopyrite dots and disease in sphalerite are replacement products by later hydrothermal solution at the early stage III. The inferred processes of chalcopyrite disease are as follows: (1) Fe enrichment to the margins and along the cracks of the Fe-poor sphalerite by Fe-rich solution, (2) Formation of chalcopyrite dots in the Fe-enriched sphalerite formed at the stage II, and Fe reduction of sphalerite near the chalcopyrite dots by Cu-bearing solution, (3) Formation of "chalcopyrite disease" penetrating the compositional zoning of sphalerite at the early stage III.