DOI QR코드

DOI QR Code

Occurrence Characteristics and Existing Forms of U-Th Containing Minerals in KAERI Underground Research Tunnel(KURT) Granite

한국원자력연구원 지하처분연구시설(KURT) 화강암의 U-Th 함유광물 산출특성 및 존재형태

  • 조완형 (한국원자력연구원 방사성폐기물처분연구부) ;
  • 백민훈 (한국원자력연구원 방사성폐기물처분연구부) ;
  • 박태진 (한국원자력연구원 방사성폐기물처분연구부)
  • Received : 2017.02.20
  • Accepted : 2017.04.12
  • Published : 2017.04.28

Abstract

Occurrence characteristics and existing forms of U-Th containing minerals in KURT (KAERI Underground Research Tunnel) granite are investigated to understand long-term behavior of radionuclides in granite considered as a candidate rock for the geological disposal of high-level radioactive waste. KURT granite primarily consists of quartz, feldspar and mica. zircon, REE(Rare Earth Element)-containing monazite and bastnaesite are also identified. Besides, secondary minerals such as sericite, microcline and chlorite including quartz vein and calcite vein are observed. These minerals are presumed to be accompanied by a post-hydrothermal process. U-Th containing minerals are mainly observed at the boundaries of quartz, feldspar and mica, mostly less than $30{\mu}m$ in size. Quantitative analysis results using EPMA (Electron Probe Micro-Analyzer) show that 74.2 ~ 96.5% of the U-Th containing minerals consist of $UO_2$ (3.39 ~ 33.19 wt.%), $ThO_2$ (41.61 ~ 50.24 wt.%) and $SiO_2$ (15.43 ~ 18.60 wt.%). Chemical structure of the minerals calculated using EPMA quantitative analysis shows that the U-Th minerals are silicate minerals determined as thorite and uranothorite. The U-Th containing silicate minerals are formed by a magmatic and hydrothermal process. Therefore, KURT granite formed by a magmatic differentiation is accompanied by an alteration and replacement owing to a hydrothermal process. U-Th containing silicate minerals in KURT granite are estimated to be recrystallized by geochemical factors and parameters such as temperature, pressure and pH owing to the hydrothermal process. By repeated dissolution/precipitation during the recrystallization process, U-Th containing silicate minerals such as thorite and uranothorite are formed according to the variation in the concentrated amount of U and Th.

고준위방사성폐기물 심지층 처분 대상 암종으로 고려되는 화강암에서 방사성핵종의 장기 거동 특성을 이해하기 위한 연구의 일환으로 KURT(KAERI Underground Research Tunnel) 화강암에 존재하는 U-Th 함유광물의 산출특성 및 존재형태 대한 연구를 수행하였다. KURT의 화강암은 주로 석영, 장석류와 운모류로 구성되며, 그 외에 저어콘 및 희토류원소를 함유하는 모나자이트, 바스트네사이트 등이 확인된다. 또한 견운모, 미사장석, 녹니석과 같은 이차광물과 함께 석영맥과 방해석맥 등이 관찰되는데 이는 후기 열수작용에 의한 영향으로 추정된다. U-Th 함유광물은 대부분 $30{\mu}m$ 이하로 석영 및 장석류, 운모류의 경계에서 확인된다. EPMA 정량분석 결과, U-Th 함유광물의 74.2 ~ 96.5%가 $UO_2$ (3.39 ~ 33.19 wt.%), $ThO_2$(41.61 ~ 50.24 wt.%), $SiO_2$ (15.43 ~ 18.60 wt.%) 등으로 구성된 것으로 확인된다. EPMA 분석결과를 이용한 화학구조식 계산결과, U-Th 함유광물은 규산염 광물로 토라이트(thorite), 우라노토라이트(uranothorite)인 것으로 판단된다. U-Th 함유 규산염 광물은 화강암과 페그마타이트 및 열수작용에 의해 형성된다. 따라서 마그마의 분화에 의해 형성된 KURT 화강암은 후기 열수에 의해 변질 및 교대작용이 수반되었을 것으로 판단된다. U-Th 함유 규산염 광물은 열수에 기인한 온도, 압력, pH 등의 변수들과 지화학적 요인에 의해 재결정 작용을 일으킨 것으로 추정된다. 또한 재결정 과정 동안 반복적인 용해/침전에 의해 우라늄과 토륨의 농집량 변화에 따라 토라이트, 우라노토라이트 광물들이 형성된 것으로 판단된다.

Keywords

References

  1. Baik, M.H., Kang, M.J., CHo, S.Y. and Jeong, J.T. (2015) A comparative study for the determination of uranium and uranium isotopes in grantic groundwater. J. Radioanal. Nucl. Chem., v.304, p.9-14. https://doi.org/10.1007/s10967-014-3699-4
  2. Choo, C.O. (2002) Characteristics of uraniferous minerals in Daebo granite and significance of mineral species. J. Miner. Soc. Korea, v.15, p.11-21.
  3. Foster, H.J. (2006) Composition and origin of intermediate solid solution in the system thorite-xenotimezircon- coffinite. Lithis, v.88, p.35055.
  4. Harrald G. (2010) The "chessboard'' classification scheme of mineral deposits: Mineralogy and geology by from aluminum to zirconium. Earth-science Reviews, v.100, p.1-420. https://doi.org/10.1016/j.earscirev.2009.10.011
  5. Harvey, B. and Tracy, R.J. (1997) Petrology(2nd ed.), New York, Freeman, p.66.
  6. Hazen, R.M., Ewing, R.C. and Sverjensky, D.A. (2009) Evolution of uranium and thorium minerals. Am. Mineral., v.94, p.1293-1311. https://doi.org/10.2138/am.2009.3208
  7. Kim, G.Y., Koh, Y.K., Bae, D.S. and Kim, C.S. (2004) Mineralogical characteristics of fracture-filling minerals from the deep borehole in the Yuseong area for the radioactive waste disposal project. J. Miner. Soc. Korea, v.17(1), p.99-144.
  8. Kim, S.J. (1982) Principle of mineralogy. Woosung, Seoul, 610p.
  9. Korea Atomic Industrial Forum Inc. (2001) Nuclear terminology dictionary. Geosung, Seoul, 752p.
  10. Lee, D.J. (1984) Mineralogy and genesis of uranium ores in the Ogcheon group. Seoul National University, Docterate Thesis, Korea, 75p.
  11. Lee, D.J., Sang, K.N. and Lee, S.R. (1982) The mineralogical study of uranium and compositional mineral in coaly slate. Korea Institute Geoscience and Mineral Resources, Research Report, v.13, p.167-181.
  12. Lee, J.K., Baik, M.H., Lee, T.Y., Park, K.W. and Jeong, J.T. (2013) Insitu solute migration experiments in fractured rock at KURT: Installation of experimental system and in situ solute migration experiments. JNFCWT, v.11, p.229-243.
  13. Lee, M.S. and Kim, S.W. (1985) Uranium distribution patterns and U-mineral in the U-bearing coaly slate of Ogcheon system. J. Korean Inst. Mining Geol., v.18, p.135-138.
  14. Lee, M.S. (1978) Geochemical study of granite intrusion in the area of uranium bearing formation of the Ogcheon system. J. Geol. Soc. Korea, v.14, p.113-119.
  15. Lee, S.M., Kim, H.S. and Na, K.C. (1980) Geological map of Korea(Daejeon sheet 1:50,000). Korea Institute Geoscience and Mineral Resources, Korea, 26p.
  16. Lee, S.Y., Baik, M.H. and Cho, W.J. (2006) Mineralogical characteristics of calcite observed in the KAERI underground research tunnel. J. Miner. Soc. Korea, v.19, p.239-246.
  17. Mariner, P.E., Lee, J.H., Hardin, E.L., Hansen, F.D., Freeze, G.A., Lord, A.S., Goldstein, B. and Price, R.H. (2011) Granite disposal of U.S. high-level radioactive waste. SAND2011-6203, Sandia, California.
  18. Mohr, D.W. (1984) Zoned porphyroblasts of metamorphic monazite in the Anakeesta formation, great smoky mountains. Am. Mineral., v.69, p.98-103.
  19. Overstreet, W.C. (1967) The geologic occurrence of monazite. US Goverment Printing Office.
  20. Park, H.I., Lee, J.D. and Jeong, J.G. (1977) Geological map of Korea(Yousung sheet 1:50,000). Korea Institute Geoscience and Mineral Resources, Korea, 21p.
  21. Park, J.K., Oh, C.H. and Choi, S.C. (1990) The study of the uraniferous granite in Munkyoung area. Korea Institute Geoscience and Mineral Resources, KR-90- 21392, 87p.
  22. Park, J.W. (2011) Uranium. http:// navercast.naver.com/contents.nhn?rid=44&contents_ id=7115.
  23. Park, M.E. and Kim, G.S. (1998) Geochemistry of uranium and thorium deposits from the Kyemyeongsan pegmatite. Econ. Environ. Geol., v.31, p.365-374.
  24. Perez, V.L., Cozar, J.S., Cruz, B., Pardillo, J. and Fernandez, A.M. (1995) Influence of the alteration processes on the U-Th-REE minerals in the El Verrocal granite/ U-bearing quartz vein system(Spain): An example of natural analogue processes. In Minerals Deposit From Their Origin to Their Encironmental Impacts (Pasava, J., Kribek, B. and Zak, K., Eds), Balkema, Rotterdam, 689p.
  25. Smyslov, A.A. (1974) Uranium and thorium in the earth crust. Nedra, Leningrad.
  26. Szenknect, S., Costin, D.T., Clavier, N., Mesbah, A., Poinssot, C., Vitorge, P. and Dacheux, N. (2013) From uranothorites to coffinite: A solid solution route to the thermodynamic properties of $USiO_4$. Inorg. Chem., v.52, p.6957-6968. https://doi.org/10.1021/ic400272s
  27. Titayeva, N.A. (1994) Nuclear geochemistry. CRC Press, Moscow, 296p.
  28. Yun, S.K. (1984) Mineralogical and geochemical studies of uranium deposits of Okchen group in Southwestern district of Taejon. J. Korean Inst. Mining Geol., v.17, p.289-298.

Cited by

  1. Influence of Dissolved Ions on Geochemical Dissolution of Uranium in KURT Granite vol.16, pp.3, 2018, https://doi.org/10.7733/jnfcwt.2018.16.3.281