• Title/Summary/Keyword: hydrothermal behavior

Search Result 67, Processing Time 0.02 seconds

Varistor Behavior of ZnO Single Crystal Monolayer Junction (단입계 ZnO 단결정 접합체의 바리스터 거동)

  • Kim, Young-Jung;Kim, Yeong-Cheol;Ahn, Seung-Joon;Min, Joon-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.5 s.276
    • /
    • pp.366-370
    • /
    • 2005
  • Single gram-boundary varistors were fabricated using hydrothermal and vapor phase grown ZnO single crystals and their voltage-current relation was studied. The single crystal bonded single junction varistor showed various voltage-current relationship and different breakdown voltage of 0.24-3V. The different types of non-linear current voltage behaviors was attributed to the variation of electrical conductivity in ZnO single crystals.

A Novel 3D Polypseudo-rotaxane Metal-organic Framework Based on a Flexible Bis-pyridyl-bis-amide Ligand

  • Wang, Xiu-Li;Han, Na;Lin, Hong-Yan;Xu, Chuang;Luan, Jian;Liu, Guo-Cheng
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3793-3796
    • /
    • 2012
  • A novel 3D compound $\{[Cu(L)(H_2O)_4][Cu_2(SIP)_2(L)_2]\}{\cdot}2H_2O$ (1) (L = N,N-bis(4-pyridinecarboxamide)-1,4-butane, SIP = 5-sulfoisophthalate) is hydrothermally synthesized. X-ray diffraction analysis reveals that compound 1 is composed of 2D anionic $[Cu_2(SIP)_2(L)_2]_n{^{2n-}}$ double-layers and discrete 1D cationic $[CuL(H_2O)_4]_n{^{2n+}}$ polymeric chains, which represents a rare 3D polypseudo-rotaxane MOF from intercalation of 1D and 2D framework. In addition, the luminescent property and electrochemical behavior of compound 1 have been investigated.

Occurrence Characteristics and Existing Forms of U-Th Containing Minerals in KAERI Underground Research Tunnel(KURT) Granite (한국원자력연구원 지하처분연구시설(KURT) 화강암의 U-Th 함유광물 산출특성 및 존재형태)

  • Cho, Wan Hyoung;Baik, Min Hoon;Park, Tae-Jin
    • Economic and Environmental Geology
    • /
    • v.50 no.2
    • /
    • pp.117-128
    • /
    • 2017
  • Occurrence characteristics and existing forms of U-Th containing minerals in KURT (KAERI Underground Research Tunnel) granite are investigated to understand long-term behavior of radionuclides in granite considered as a candidate rock for the geological disposal of high-level radioactive waste. KURT granite primarily consists of quartz, feldspar and mica. zircon, REE(Rare Earth Element)-containing monazite and bastnaesite are also identified. Besides, secondary minerals such as sericite, microcline and chlorite including quartz vein and calcite vein are observed. These minerals are presumed to be accompanied by a post-hydrothermal process. U-Th containing minerals are mainly observed at the boundaries of quartz, feldspar and mica, mostly less than $30{\mu}m$ in size. Quantitative analysis results using EPMA (Electron Probe Micro-Analyzer) show that 74.2 ~ 96.5% of the U-Th containing minerals consist of $UO_2$ (3.39 ~ 33.19 wt.%), $ThO_2$ (41.61 ~ 50.24 wt.%) and $SiO_2$ (15.43 ~ 18.60 wt.%). Chemical structure of the minerals calculated using EPMA quantitative analysis shows that the U-Th minerals are silicate minerals determined as thorite and uranothorite. The U-Th containing silicate minerals are formed by a magmatic and hydrothermal process. Therefore, KURT granite formed by a magmatic differentiation is accompanied by an alteration and replacement owing to a hydrothermal process. U-Th containing silicate minerals in KURT granite are estimated to be recrystallized by geochemical factors and parameters such as temperature, pressure and pH owing to the hydrothermal process. By repeated dissolution/precipitation during the recrystallization process, U-Th containing silicate minerals such as thorite and uranothorite are formed according to the variation in the concentrated amount of U and Th.

Evolution of Hydrothermal Fluids at Daehwa Mo-W Deposit (대화 Mo-W 열수 맥상 광상의 유체 진화 특성)

  • Jo, Jin Hee;Choi, Sang Hoon
    • Economic and Environmental Geology
    • /
    • v.46 no.1
    • /
    • pp.11-19
    • /
    • 2013
  • The Daehwa Mo-W deposit is located within the Gyeonggi massif. Quartz and calcite vein mineralization occurred in the Precambrian gneiss and Jurassic granites. Three main types (Type I: liquid-rich $H_2O$ type, Type II: vapor-rich $H_2O$ type, Type III: $CO_2-H_2O$ type) of fluid inclusions were observed and are classified herein based on their phase relations at room temperature. Within ore shoots, type III fluid inclusions have been classified into four subtypes (type IIIa, IIIb, IIIc and IIId) based on their volume percent of aqueous and carbonaceous ($CO_2$) phase at room temperatures combined with their total homogenization behavior and homogenization behavior of $CO_2$ phase. Homogenization temperatures of primary type I fluid inclusions in the quartz range from $374^{\circ}C$ to $161^{\circ}C$ with salinities between 13.6 and 0.5 equiv. wt.% NaCl. Homogenization temperatures of primary type III fluid inclusions in quartz of main generation, are in the range of $303^{\circ}C$ to $251^{\circ}C$. Clathrate melting temperatures of the type III fluid inclusions were 7.3 to $9.5^{\circ}C$, corresponding to salinities of 5.2 to 1.0 equiv. wt. % NaCl. Melting and homogenization temperatures of $CO_2$ phase of type III fluid inclusions were -57.4 to $-56.6^{\circ}C$ and 29.0 to $30.8^{\circ}C$, respectively. Fluid inclusion data indicate a complex geochemical evolution of hydrothermal fluids. The Daehwa early hydrothermal system is characterized by $H_2O-CO_2$-NaCl fluid at about $400^{\circ}C$. The main mineralization occurred by $CO_2$ immiscibility at temperatures of about 300 to $250^{\circ}C$. At the late base-metal mineralization aqueous fluid formed by mixing with cooler and less saline meteoric groundwater.

Hierarchically nanoporous carbons derived from empty fruit bunches for high performance supercapacitors

  • Choi, Min Sung;Park, Sulki;Lee, Hyunjoo;Park, Ho Seok
    • Carbon letters
    • /
    • v.25
    • /
    • pp.103-112
    • /
    • 2018
  • Hierarchically porous, chemically activated carbon materials are readily derived from biomass using hydrothermal carbonization (HTC) and chemical activation processes. In this study, empty fruit bunches (EFB) were chosen as the carbon source due to their sustainability, high lignin-content, abundance, and low cost. The lignin content in the EFB was condensed and carbonized into a bulk non-porous solid via the HTC process, and then transformed into a hierarchical porous structure consisting of macro- and micropores by chemical activation. As confirmed by various characterization results, the optimum activation temperature for supercapacitor applications was determined to be $700^{\circ}C$. The enhanced capacitive performance is attributed to the textural property of the extremely high specific surface area of $2861.4m^2\;g^{-1}$. The prepared material exhibited hierarchical porosity and surface features with oxygen functionalities, such as carboxyl and hydroxyl groups, suitable for pseudocapacitance. Finally, the as-optimized nanoporous carbons exhibited remarkable capacitive performance, with a specific capacitance of $402.3F\;g^{-1}$ at $0.5A\;g^{-1}$, a good rate capability of 79.8% at current densities from $0.5A\;g^{-1}$ to $10A\;g^{-1}$, and excellent life cycle behavior of 10,000 cycles with 96.5% capacitance retention at $20A\;g^{-1}$.

Selective DNA Adsorption on Layered Double Hydroxide Nanoparticles

  • Kim, Kyoung-Min;Park, Chung-Berm;Choi, Ae-Jin;Choy, Jin-Ho;Oh, Jae-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2217-2221
    • /
    • 2011
  • We investigated the selective deoxyribonucleic acid (DNA) adsorption on layered double hydroxide (LDH) nanoparticles via studying the interaction between positively charged LDH nanoparticle as adsorbent and negatively charged adsorbates such as methyl orange (MO), fluorescein (FL), and DNA strands. The size controlled LDH $(Mg_{0.78}Al_{0.22}(OH)_2(CO_3)_{0.11}{\cdot}mH_2O)$ was prepared by conventional coprecipitation method, followed by the hydrothermal treatment. According to the adsorption isotherms, the adsorbed amounts of MO and FL were similar, however, that of DNA were much larger. The adsorption behaviors were well fitted to Freundlich adsorption model. The concentration dependent adsorption behavior on LDH surface was described in order to verify the selective DNA separation ability. The result showed that the LDH has advantages in selective adsorption of DNA competing with single molecular anions.

Microwave Assisted Synthesis of Graphene-Bi2MoO6 Nanocomposite as Sono-Photocatalyst

  • Tang, Jia-Yao;Zhu, Lei;Fan, Jia-Yi;Sun, Chen;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • In this investigation, Bi2MoO6 deposited graphene nanocomposite (BMG) was synthesized using a simple microwave assisted hydrothermal synthesis method. The synthesized BMG nanocomposite was characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy with energy dispersive X-ray analysis, and photocurrent analysis. The study revealed that the catalysts prepared have high crystalline nature, enhanced light responsive property, high catalytic activity, and good stability. XRD results of BMG composite exhibit a koechlinite phase of Bi2MoO6. The surface property is shown by SEM and TEM, which confirmed a homogenous composition in the bulk particles of Bi2MoO6 and nanosheets of graphene. The catalytic behavior was investigated by the decomposition of Rhodamine B as a standard dye. The results exhibit excellent yields of product derivatives at mild conditions under ultrasonic/visible light-medium. Approximately 1.6-times-enhanced sono-photocatalytic activity was observed by introduction of Bi2MoO6 on graphene nanosheet compared with control sample P25 during 50 min test.

Facile Synthesis of g-C3N4 Modified Bi2MoO6 Nanocomposite with Improved Photoelectronic Behaviors

  • Zhu, Lei;Tang, Jia-Yao;Fan, Jia-Yi;Sun, Chen;Meng, Ze-Da;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.31 no.11
    • /
    • pp.593-600
    • /
    • 2021
  • Herein, a series of g-C3N4 modified Bi2MoO6 nanocomposites using Bi2MoO6 and melamine as original materials are fabricated via sintering process. For presynthesis of Bi2MoO6 an ultrasonic-assisted hydrothermal technique is researched. The structure and composition of the nanocomposites are characterized by Raman spectroscopy, X-ray diffraction (XRD), and high-resolution field emission scanning electron microscopy (SEM). The improved photoelectrochemical properties are studied by photocurrent density, EIS, and amperometric i-t curve analysis. It is found that the structure of Bi2MoO6 nanoparticles remains intact, with good dispersion status. The as-prepared g-C3N4/Bi2MoO6 nanocomposites (BMC 5-9) are selected and investigated by SEM analysis, which inhibits special morphology consisting of Bi2MoO6 nanoparticles and some g-C3N4 nanosheets. The introduction of small sized g-C3N4 nanosheets in sample BMC 9 is effective to improve the charge separation and transfer efficiency, resulting in enhancing of the photoelectric behavior of Bi2MoO6. The improved photoelectronic behavior of g-C3N4/Bi2MoO6 may be attributed to enhanced charge separation efficiency, photocurrent stability, and fast electron transport pathways for some energy applications.

Physicochemical Study of the Wondong Fe-Pb-Zn Skarn Deposit, Korea (원동(院洞) Fe-Pb-Zn 스카른광상의 물리화학적(物理化學的) 특징(特徵))

  • Chang, Ho Wan;Chang, Byung Uck
    • Economic and Environmental Geology
    • /
    • v.25 no.1
    • /
    • pp.1-16
    • /
    • 1992
  • The Wondong Fe-Pb-Zn deposit is located in endo and exoskarns formed along the contact between the Makkol limestone interbedding pelitic limestone of Ordovician age and quartz porphyry of Cretaceous age. At the Wondong mine, the endoskarn shows a discontinuous zonal arrangement from quartz porphyry to pelitic limestone as follows: unaltered quartz porphyry, weakly altered quartz porphyry zone, intensively altered pinkish quartz porphyry zone, garnet zone, and greyish white and fine-grained clinopyroxene zone developed at pelitic limestone side. In terms of chemical mass balance, intensively altered pinkish quartz porphyry relative to unaltered quartz porphyry shows substantial enrichments in $K_2O$, $Na_2O$, and HREE and depletions in MgO, CaO, total $Fe_2O_3$, and LREE. On the other hand, garnet zone of endoskarn is enriched in CaO, MnO, total $Fe_2O_3$, MgO and depleted in $K_2O$, $Na_2O$. $Al_2O_3$ seems to be determining inert component. Thus the behavior of elements indicates that the mobility of elements depends on the equilibration of hydrothermal fluid and minerals and affects on enrichments by fractionation from and depletions by partition to hydrothermal fluid, respectively. Traversing toward pelitic limestone from a central zone of exoskarn, the exoskarn also shows a zonal arrangement as follows: garnet zone, clinopyroxene zone, and decolored pelitic limestone. The arrangement of mineral assemblages in skarns of the Wondong mine is the result of an increase in CaO and $K_2O$ toward the pelitic limestone. Skarn and ore minerals were formed in the following sequence: early skarn, late skarn and magnetite, pyrite, sphalerite, galena, and molybdenite. On the basis of stabilities of mineral assemblages, physicochemical conditions of the late skarn and magnetite mineralization are estimated to be $350^{\circ}C{\leq}T{\leq}400^{\circ}C$ at 1 Kb, $-23{\leq}log\;fO_2{\leq}-18$, and $0.005{\leq}XCO_2{\leq}0.01$, while those of the early skarn to be $420^{\circ}C{\leq}T{\leq}550^{\circ}C$ at 1 Kb.

  • PDF

Ammonium Behavior and Nitrogen Isotope Characteristics of 2:1 Clay Minerals from Submarine Hydrothermal System in the Wakamiko Crater of Kagoshima Bay, Southwestern Japan (일본 서남부 가고시마 와카미코 해저 열수환경에서 형성된 2:1 점토광물 내 암모늄 거동 및 질소동위원소 특성)

  • Jo, Jaeguk;Yamanaka, Toshiro;Shin, Dongbok
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.151-160
    • /
    • 2021
  • 2:1 clay minerals such as smectite incorporating ammonium were extracted to investigate the ammonium behavior and nitrogen isotope characteristics for two different sediment cores which were collected from shimmering sites on seafloor of the Wakamiko crater, southwestern Japan. Inorganic nitrogen contents in clay fraction were estimated by calibration curve based on consistently decreasing carbon and nitrogen ratio during the treatment to decompose organic materials, after removing inorganic carbon. The results show that the proportions of inorganic nitrogen for total nitrogen in clay fraction of SWS site(Core#1094MR: av. 18.2%) are higher than those in SES site(Core#1093MG: av. 11.5%). Relatively good crystallinity of the former suggests that exchangeable ammonium was transformed to non-exchangeable ammonium during more evolving diagenetic process. Nitrogen isotope variance of clay fraction(SES site: Core#1093MG: -4.4 ~ +0.2 ‰, av. -2.4 ‰; SWS site: Core#1094MR: -0.7 ~ +3.0 ‰, av. +1.5 ‰) during sequential decomposition of exchangeable ammonium suggests that heat flow derived from deep magma led to nitrogen isotope fractionation between dissolved ammonium and ammonia in the fluids involved in the formation of 2:1 clay mineral incorporating ammonium with local temperature variation.