DOI QR코드

DOI QR Code

Ammonium Behavior and Nitrogen Isotope Characteristics of 2:1 Clay Minerals from Submarine Hydrothermal System in the Wakamiko Crater of Kagoshima Bay, Southwestern Japan

일본 서남부 가고시마 와카미코 해저 열수환경에서 형성된 2:1 점토광물 내 암모늄 거동 및 질소동위원소 특성

  • Jo, Jaeguk (Department of Geoenvironmental Sciences, Kongju National University) ;
  • Yamanaka, Toshiro (Department of Ocean and Environmental Sciences, Tokyo University of Marine Science and Technology) ;
  • Shin, Dongbok (Department of Geoenvironmental Sciences, Kongju National University)
  • Received : 2020.12.01
  • Accepted : 2021.02.06
  • Published : 2021.02.28

Abstract

2:1 clay minerals such as smectite incorporating ammonium were extracted to investigate the ammonium behavior and nitrogen isotope characteristics for two different sediment cores which were collected from shimmering sites on seafloor of the Wakamiko crater, southwestern Japan. Inorganic nitrogen contents in clay fraction were estimated by calibration curve based on consistently decreasing carbon and nitrogen ratio during the treatment to decompose organic materials, after removing inorganic carbon. The results show that the proportions of inorganic nitrogen for total nitrogen in clay fraction of SWS site(Core#1094MR: av. 18.2%) are higher than those in SES site(Core#1093MG: av. 11.5%). Relatively good crystallinity of the former suggests that exchangeable ammonium was transformed to non-exchangeable ammonium during more evolving diagenetic process. Nitrogen isotope variance of clay fraction(SES site: Core#1093MG: -4.4 ~ +0.2 ‰, av. -2.4 ‰; SWS site: Core#1094MR: -0.7 ~ +3.0 ‰, av. +1.5 ‰) during sequential decomposition of exchangeable ammonium suggests that heat flow derived from deep magma led to nitrogen isotope fractionation between dissolved ammonium and ammonia in the fluids involved in the formation of 2:1 clay mineral incorporating ammonium with local temperature variation.

함암모늄 2:1 점토광물 내 암모늄 거동과 질소동위원소 특성을 살펴보기 위해 일본 남서부 해저 와카미코 화구(Wakamiko crater) 내 열수가 분출하는 두 지점에서 퇴적물 코어를 채취하여 스멕타이트로 대표되는 점토입자를 추출하였다. 점토입자 내 무기탄소 제거 후 순차적인 유기물 분해과정에서 감소하는 탄소-질소 비에 근거하여 무기질소 함량을 추정한 결과, 전질소에 대한 무기질소 비율은 SES 지점(Core#1093MG: av. 11.5%)에 비해 SWS 지점 (Core#1094MR: av. 18.2%)에서 높은 경향을 보였다. 후자에서 높은 광물 결정도를 보인 점은 상대적으로 진전된 광물화와 함께 교환성 암모늄이 비교환성 암모늄으로 전환된 결과로 해석된다. 단계적인 점토입자 내 교환성 암모늄의 제거과정에서 나타난 질소동위원소 조성 변화(SES 지점: Core#1093MG: -4.4 ~ +0.2 ‰, av. -2.4 ‰; SWS 지점: Core#1094MR: -0.7 ~ +3.0 ‰, av. +1.5 ‰)로부터 심부 마그마에서 비롯된 열류 및 열수에 의한 국부적인 온도변화는 함암모늄 2:1 점토광물의 형성에 관여한 유체 내 용존 암모늄과 암모니아 사이에서 질소동위원소 분별을 야기했을 것이다.

Keywords

References

  1. Aramaki, S. (1984) Formation of the Aira Caldera, southern Kyushu, -22,000 years ago. J. Geophys. Res., v.89, p.8485-8501. https://doi.org/10.1029/JB089iB10p08485
  2. Ciniglia, C., Valentino, G.M., Cennamo, P., De Stefano, M., Stanzione, D., Pinto, G. and Pollio, A. (2005) Influences of geochemical and mineralogical constraints on algal distribution in acidic hydrothermal environments: Pisciarelli (Naples, Italy) as a model site. Arch. Hydrobiol., v.162, p.121-142. https://doi.org/10.1127/0003-9136/2005/0162-0121
  3. Christidis, G.E. (1995) Mechanism of illitization of bentonites in the geothermal field of Milos Island Greece: Evidence based on mineralogy, chemistry, particle thickness and morphology. Clays Clay Miner., v.43, p.569-585. https://doi.org/10.1346/CCMN.1995.0430507
  4. Deng, Y., Li, Y., and Li, L. (2018) Experimental investigation of nitrogen isotopic effects associated with ammonia degassing at 0-70℃: Geochim. Cosmochim. Acta, v.226, p.182-191. https://doi.org/10.1016/j.gca.2018.02.007
  5. Fesharaki, O., Garcia-Romero, E., Cuevas-Gonzalez, J., and LopezMartinez, N. (2007) Clay mineral genesis and chemical evolution in the Miocene sediments of Somosaguas, Madrid Basin, Spain. Clay Miner., v.42, p.187-201. https://doi.org/10.1180/claymin.2007.042.2.05
  6. Freudenthal, T., Wagner, T., Wenzhofer, F., Zabel, M. and Wefer, G. (2001) Early diagenesis of organic matter from sediments of the eastern subtropical Atlantic: evidence from stable nitrogen and carbon isotopes. Geochim. Cosmochim. Acta, v.65, p.1795-1808. https://doi.org/10.1016/S0016-7037(01)00554-3
  7. Fujino, K., Yamanaka, T., Ehara, S. and Fujimitsu, Y. (2015) Heat flow observations in and around Wakamiko Crater in Kagoshima Bay, Kyushu, Japan. J. Geotherm. Res. Soc. Japan, v.37, p.13-26 (in Japanese with English abstract).
  8. Hayasaka, S. (1987) Geologic structure of Kagoshima Bay, south Kyushu, Japan. Mono. Assoc. Geol. Collab., v.33, p.225-233 (in Japanese with English abstract).
  9. Hurst, C.A. and Jordine, E.S.A. (1964) Role of electrostatic energy barriers in expansion of lamellar crystals. J. Chem. Phys., v.41, p.2735-2745. https://doi.org/10.1063/1.1726345
  10. Inoue, A., Lanson, B., Marques-Fernandes, M., Sakharov, B.A., Murakami, T., Meunier, A. and Beaufort, D. (2005) Illite-smectite mixed-layer minerals in the hydrothermal alteration of volcanic rocks: I. one-dimensional XRD structure analysis and characterization of component layers. Clay Miner., v.53, p.423-439. https://doi.org/10.1346/CCMN.2005.0530501
  11. Ishibashi, J., Nakaseama, M., Seguchi, M., Yamashita, T., Doi, S., Sakamoto, T. and Yamanaka, T. (2008) Marine shallow-water hydrothermal activity and mineralization at the Wakamiko crater in Kagoshima bay, south Kyushu, Japan. J. Volcanol. Geotherm., v.173, p.84-98. https://doi.org/10.1016/j.jvolgeores.2007.12.041
  12. Jo, J.G. (2018) Study of ammonium fixation by clay minerals associated with sediment-hosted seafloor hydrothermal environment. Ph.D. Thesis, Okayama university, Okayama. 97p.
  13. Jo, J.G, Yamanaka, T., Kashimura, T., Okunishi, Y., Kuwahara, Y., Miyoshi, Y., Ishibashi, J-I. and Chiba, H. (2018) Mineral nitrogen isotope signature in clay minerals formed under high ammonium environment conditions in sediment associated with ammonium-rich sediment-hosted hydrothermal system. Geochem. J., v.52, p.1-16. https://doi.org/10.2343/geochemj.2.0485
  14. Kittrick, J.A. (1966) Forces involved in ion fixation by vermiculite 1. Soil. Sci. Soc. Am. J., v.30, p.801-803. https://doi.org/10.2136/sssaj1966.03615995003000060040x
  15. Klein, F., Humphris, S.E., Guo, W., Schubotz, F., Schwarzenbach, E.M. and Orsi, W.D. (2015) Fluid mixing and the deep biosphere of a fossil Lost City-type hydrothermal system at the Iberia Margin. Proc. Natl. Acad. Sci. U.S.A., v.112, p.12036-12041. https://doi.org/10.1073/pnas.1504674112
  16. Krohn, M.D., Kendall, C., Evans, J.R. and Fries, T.L. (1993) Relations of ammonium minerals at several hydrothermal systems in the western U.S. J. Volcanol. Geotherm., v.56, p.401-413. https://doi.org/10.1016/0377-0273(93)90005-C
  17. Lang, S.Q., Fruh-Green, G.L., Bernasconi, S.M. and Butterfield, D.A. (2013) Sources of organic nitrogen at the serpentinite-hosted Lost City hydrothermal field. Geobiology. v.11, p.154-169. https://doi.org/10.1111/gbi.12026
  18. Li, L., Lollar, B.S., Li, H., Wortmann, U.G. and Lacrampe-Couloume, G. (2012) Ammonium stability and nitrogen isotope fractionations for -NH3(aq)-NH3(gas) systems at 20-70℃ and pH of 2-13: Applications to habitability and nitrogen cycling in low-temperature hydrothermal systems. Geochim. Cosmochim. Acta, v.84, p.280-296. https://doi.org/10.1016/j.gca.2012.01.040
  19. Miyoshi, Y., Ishibashi, J., Faure, K., Maeto, K., Matsukura, S., Omura, A. and Yamanaka, T. (2013) Mg-rich clay mineral formation associated with marine shallow-water hydrothermal activity in an arc volcanic caldera setting. Chem. Geol., v.355, p.28-44. https://doi.org/10.1016/j.chemgeo.2013.05.033
  20. Nakaseama, M., Ishibashi, J.-I., Ogawa, K., Hamasaki, H., Fujino, K., and Yamanaka, T. (2008) Fluid-sediment interaction in a marine shallow-water hydrothermal system in the Wakamiko submarine crater, south Kyushu, Japan. Resour. Geol., v.58, p.289-300. https://doi.org/10.1111/j.1751-3928.2008.00062.x
  21. Neal, C. and Stanger, G. (1983) Hydrogen generation from mantle source rocks in Oman. Earth Planet. Sci. Lett., v.66, p.315-320. https://doi.org/10.1016/0012-821X(83)90144-9
  22. Oki, K. and Hayasaka, S. (1978) Geological study on Kagoshima bay, south Kyushu, Japan. Part Iv-A note on the peculiar mode of occurrence of foraminifers in the bottom sediments of the bayhead area. Sci. Rep. Kagoshima Univ. v.11, p.1-11.
  23. Olofsson, G. (1975) Thermodynamic quantities for the dissociation of the ammonium ion and for the ionization of aqueous ammonia over a wide temperature range. J. Chem. Thermodyn., v.7, p.507-514. https://doi.org/10.1016/0021-9614(75)90183-4
  24. Perry, E. and Hower, J. (1970) Burial diagenesis in Gulf coast pelitic sediments. Clays Clay Miner., v.18, p.165-177. https://doi.org/10.1346/CCMN.1970.0180306
  25. Rosenfeld, J.K. (1979) Ammonium adsorption in nearshore anoxic sediments. Limnol. Oceanogr., v.24, p.356-364. https://doi.org/10.4319/lo.1979.24.2.0356
  26. Velde, B. and Vasseur, G. (1992) Estimation of the diagenetic smectite to illite transformation in time-temperature space. Am. Mineral., v.77, p.967-976.
  27. Williams, L.B., Ferrell Jr., R.E., Chinn, E.W. and Sassen, R. (1989) Fixed-ammonium in clays associated with crude oils. J. Appl. Geochem., v.4, p.605-616. https://doi.org/10.1016/0883-2927(89)90070-X
  28. Yamanaka, T., Ishibashi, J. and Hashimoto, J. (2000) Organic geochemistry of hydrothermal petroleum generated in the submarine Wakamiko caldera, southern Kyushu, Japan. Org. Geochem., v.31, p.1117-1132. https://doi.org/10.1016/S0146-6380(00)00119-4
  29. Yamanaka, T., Maeto, K., Akashi, H., Ishibashi, J.-I., Miyoshi, Y., Okamura, K., Noguchi, T., Kuwahara, Y., Toki, T., Tsunogai, U., Ura, T., Nakatani, T., Maki, T., Kubokawa, K. and Chiba, H. (2013) Shallow submarine hydrothermal activity with significant contribution of magmatic water producing talc chimneys in the Wakamiko Crater of Kagoshima Bay, southern Kyushu, Japan. J. Volcanol. Geotherm., v.258, p.74-84. https://doi.org/10.1016/j.jvolgeores.2013.04.007
  30. Yoshimura, T. (2003) Diagenesis and clay minerals. J. Clay Sci. Soc. Jpn., v.42, p.167-173