• Title/Summary/Keyword: hydrothermal behavior

Search Result 66, Processing Time 0.031 seconds

Dispersion stability of polyelectrolyte-wrapped carbon black particles in a highly fluorinated solvent

  • Yoon, Hyeon Ji;Choe, Jun Ho;Jin, Hyoung-Joon
    • Carbon letters
    • /
    • v.26
    • /
    • pp.25-30
    • /
    • 2018
  • The dielectric medium used in electrophoretic displays (EPDs) is required to be an environmentally friendly solvent with high density, low viscosity, and a large electric constant. Hydrofluoroether, a highly fluorinated solvent with eco-friendly characteristics, is regarded as a viable alternative medium for EPDs, owing to the similarity of its physical properties to those of the conventional EPD medium. Surface modification of particles is required, however, in order for it to disperse in the charged solvent. Also, positive/negative charges should be present on the particle surface to enable electrophoretic behavior. In this study, carbon black particles wrapped with positively charged nitrogen (N-CBs) were fabricated by a simple hydrothermal process using a poly(diallyldimethylammonium chloride) solution as a black coloring agent for the EPD. The dispersion behavior of N-CBs was investigated in various solvents.

Behavior of Na-A Type Zeolite from Melting Slag in its Hydrothermal Synthesis (용융(熔融)슬래그로부터 Na-A형(型) 제올라이트의 수열합성(水熱合成) 거동(擧動)에 대(對)한 고찰(考察))

  • Lee, Sung-Ki;Bae, In-Koon;Jang, Young-Nam;Chae, Soo-Chun;Ryu, Kyoung-Won
    • Resources Recycling
    • /
    • v.17 no.4
    • /
    • pp.57-65
    • /
    • 2008
  • The behavior of Na-A type zeolite formed in hydrothermal synthesis of melting slag from municipal incineration ash has been investigated with varying synthesis time and $SiO_2/Al_2O_3$ ratio. Sodium silicate and sodium aluminate feed was found to initially form nuclei of Na-A type zeolite in the behavioral study of the reaction products with different synthesis times. As the synthesis time increased, the nuclei have grown to Na-A type zeolite crystals by reacting with $SiO_2$ and $Al_2O_3$ dissolved from the melting slag. The hydrothermal synthesis was completed in 10 hr in the $SiO_2/Al_2O_3$ ratio of 1.38 and after that time, the Na-A type zeolite formed was dissolved and transformed into hydroxysodalite. Only Na-A type zeolite was formed in the $SiO_2/Al_2O_3$ ratio ranging 0.80 to 1.96, whereas Na-P type zeolite as well as Na-A type was formed in the $SiO_2/Al2O_3$ ratio of 2.54.

Preparation of calcium phosphates by hydrothermal synthesis route (수열합성법에 의한 calcium phosphates 분말합성)

  • Moon, Sung Wook;Lee, Byeong Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.5
    • /
    • pp.203-207
    • /
    • 2019
  • Calcium phosphates such as hydroxyapatite (HAp), tricalcium phosphate (${\beta}$-TCP), and biphasic calcium phosphate (BCP, HAp/${\beta}$-TCP) have been prepared via hydrothermal treatment. The synthesis was conducted by reacting ($Ca(OH)_2$) aqueous solution with phosphoric acid ($H_3PO_4$) under different hydrothermal synthesis conditions (temperatures up to $150^{\circ}C$ and pH lower than 12). The effects of initial precursor Ca/P ratio (1.30, 1.50 and 1.67) and post heat treatment on the phase evolution behavior of the powders and sintered ceramics were investigated. The phases of resulting powders and sintered ceramics were controllable by adjusting the initial Ca/P ratio. A single HAp phase without any noticeable second phase was obtained for the initial Ca/P ratio of 1.67 in the overall heat treatment range. Pure ${\beta}$-TCP and biphasic calcium phosphate (HAp/${\beta}$-TCP) were synthesized from precursor solutions having Ca/P molar ratios of 1.30 and 1.50, respectively, after having been heat treated at $900^{\circ}C$ or higher. Dense ceramics with translucency were obtained at considerably lower sintering temperatures.

Finite Element Analyses on the Dynamic Behavior of Piezoelectric ZnO Nanowires and Their Piezoelectric Device Application Potentials (압전 산화아연 나노와이어의 동적거동 및 압전소자 응용성)

  • Lee, Woong
    • Korean Journal of Materials Research
    • /
    • v.31 no.1
    • /
    • pp.43-53
    • /
    • 2021
  • Dynamic behavior of piezoelectric ZnO nanowires is investigated using finite element analyses (FEA) on FE models constructed based on previous experimental observations in which nanowires having aspect ratios of 1:2. 1:31, and 1:57 are obtained during a hydrothermal process. Modal analyses predict that nanowires will vibrate in lateral bending, uniaxial elongation/contraction, and twisting (torsion), respectively, for the three ratios. The natural frequency for each vibration mode varies depending on the aspect ratio, while the frequencies are in a range of 7.233 MHz to 3.393 GHz. Subsequent transient response analysis predicts that the nanowires will behave quasi-statically within the load frequency range below 10 MHz, implying that the ZnO nanowires have application potentials as structural members of electromechanical systems including nano piezoelectric generators and piezoelectric dynamic strain sensors. When an electric pulse signal is simulated, it is predicted that the nanowires will deform in accordance with the electric signal. Once the electric signal is removed, the nanowires exhibit a specific resonance-like vibration, with the frequency synchronized to the signal frequency. These predictions indicate that the nanowires have additional application potential as piezoelectric actuators and resonators.

Structure direct agent-assisted hydrothermal synthesis and small gases adsorption behavior of pure RHO zeolite (구조유도물질 18-crown-6 ether를 이용한 순수한 RHO 제올라이트 수열합성과 작은 가스 흡착 거동)

  • Kim, Beom-Ju;Sharma, Pankaj;Han, Moon-Hee;Cho, Churl-Hee
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.141-149
    • /
    • 2014
  • In the present study, pure RHO zeolite was hydrothermally synthesized by using 18-crown-6 ether as a structure directing agent(SDA), and the small gases adsorption was investigated. Synthesized RHO zeolite was a cube shape particle of which average edge length was around $1.2{\mu}m$ and composed of primary crystallites having a diameter of around 100 to 200 nm. RHO zeolite structure was stable under 3h calcination at $600^{\circ}C$. Water adsorption data announced that RHO zeolite has a specific surface area of 483.32 m2/g and its micropore diameter was about 4 A. Gas adsorption was studied in the pressure range of 50 to 500 kPa for $CO_2$, $N_2$, $O_2$ and $H_2$. It was evident that RHO zeolite showed a strong $CO_2$ adsorption behavior. Especially, RHO zeolite showed a transient $CO_2$ adsorption behavior. The 3h $CO_2$ up-take at 50 kPa and 500 kPa was 1.283 and 3.357 mmol/g, respectively. The $CO_2/H_2$ selectivity was around 16 at 500 kPa. Compared with gas adsorption data for some representative microporous adsorbents, it was certain that RHO zeolite is a beneficial adsorbent for $CO_2/H_2$ separation.

A refined vibrational analysis of the FGM porous type beams resting on the silica aerogel substrate

  • Mohammad Khorasani;Luca Lampani;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.633-644
    • /
    • 2023
  • Taking a look at the previously published papers, it is revealed that there is a porosity index limitation (around 0.35) for the mechanical behavior analysis of the functionally graded porous (FGP) structures. Over mentioned magnitude of the porosity index, the elastic modulus falls below zero for some parts of the structure thickness. Therefore, the current paper is presented to analyze the vibrational behavior of the FGP Timoshenko beams (FGPTBs) using a novel refined formulation regardless of the porosity index magnitude. The silica aerogel foundation and various hydrothermal loadings are assumed as the source of external forces. To obtain the FGPTB's properties, the power law is hired, and employing Hamilton's principle in conjunction with Navier's solution method, the governing equations are extracted and solved. In the end, the impact of the various variables as different beam materials, elastic foundation parameters, and porosity index is captured and displayed. It is revealed that changing hygrothermal loading from non-linear toward uniform configuration results in non-dimensional frequency and stiffness pushing up. Also, Al - Al2O3 as the material composition of the beam and the porosity presence with the O pattern, provide more rigidity in comparison with using other materials and other types of porosity dispersion. The presented computational model in this paper hopes to help add more accuracy to the structures' analysis in high-tech industries.

Thermo-hydraulic Modeling in Fault Zones (단층대에서의 열-수리적 거동 모델링)

  • Lee, Young-Min;Kim, Jong-Chan;Koo, Min-Ho;Keehm, Young-Seuk
    • Economic and Environmental Geology
    • /
    • v.42 no.6
    • /
    • pp.609-618
    • /
    • 2009
  • High permeable faults are important geological structures for fluid flow, energy, and solute transport. Therefore, high permeable faults play an important role in the formation of hydrothermal fluid (or hot spring), high heat flow, and hydrothermal ore deposits. We conducted 2-D coupled thermal and hydraulic modeling to examine thermohydraulic behavior in fault zones with various permeabilities and geometric conditions. The results indicate discharge temperature in fault zones increases with increasing fault permeability. In addition, discharge temperature in fault zones is linearly correlated with Peclet number ($R^2=0.98$). If Peclet number is greater than 1, discharge temperature in fault zones can be higher than $32^{\circ}C$. In this case, convection is dominant against conduction for the heat transfer in fault zones.

Evaluation of Internal Blast Overpressures in Test Rooms of Elcetric Vehicles Battery with Pressure Relief Vents (압력배출구를 설치한 전동화 차량 배터리 시험실의 내부 폭압 평가)

  • Pang, Seungki;Shin, Jinwon;Jeong, Hyunjin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.3
    • /
    • pp.7-18
    • /
    • 2022
  • Secondary batteries used in electric vehicles have a potential risk of ignition and explosion. Various safety measures are being taken to prevent these risks. A numerical study was performed using a computational fluid dynamics code on the cases where pressure relief vents that can reduce the blast overpressures of batteries were installed in the through-compression test room, short-circuit drop test room, combustion test room, and immersion test room in facilities rleated to battery used in electric vehicles. This study was conducted using the weight of TNT equivalent to the energy release from the battery, where the the thermal runaway energy was set to 324,000 kJ for the capacity of the lithium-ion battery was 90 kWh and the state of charge (SOC) of the battery of 100%. The explosion energy of TNT (△HTNT) generally has a range of 4,437 to 4,765 kJ/kg, and a value of 4,500 kJ/kg was thus used in this study. The dimensionless explosion efficiency coefficient was defined as 15% assuming the most unfavorable condition, and the TNT equivalent mass was calculated to be 11 kg. The internal explosion generated in a test room shows the very complex propagation behavior of blast waves. The shock wave generated after the explosion creates reflected shock waves on all inner surfaces. If the internally reflected shock waves are not effectively released to the outside, the overpressures inside are increased or maintained due to the continuous reflection and superposition from the inside for a long time. Blast simulations for internal explosion targeting four test rooms with pressure relief vents installed were herein conducted. It was found that that the maximum blast overpressure of 34.69 bar occurred on the rear wall of the immersion test room, and the smallest blast overpressure was calculated to be 3.58 bar on the side wall of the short-circuit drop test room.

Synthesis and Characterization of CdSe/graphene Nanocomposites and their Catalytic Reusability Studies under Visible Light Radiation

  • Ali, Asghar;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.502-507
    • /
    • 2015
  • We examined the photo catalytic activity and catalytic recyclability of CdSe/graphene nanocomposites fabricated via modified hydrothermal technique. The prepared composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX), transmission electron microscopy (TEM), Raman spectroscopic analysis, and X-ray photoelectron spectroscopy (XPS). The photocatalytic behavior was investigated through decomposition of RBB as a standard dye under visible light radiation. Our results indicate that there is significant potential for graphene based semiconductor hybrids materials to be used as photocatalysts under visible light irradiation for the degradation of organic dyes from industry effluents.

Varistor Behavior of ZnO Single Crystal Monolayer Junction (단입계 ZnO 단결정 접합체의 바리스터 거동)

  • Kim, Young-Jung;Kim, Yeong-Cheol;Ahn, Seung-Joon;Min, Joon-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.5 s.276
    • /
    • pp.366-370
    • /
    • 2005
  • Single gram-boundary varistors were fabricated using hydrothermal and vapor phase grown ZnO single crystals and their voltage-current relation was studied. The single crystal bonded single junction varistor showed various voltage-current relationship and different breakdown voltage of 0.24-3V. The different types of non-linear current voltage behaviors was attributed to the variation of electrical conductivity in ZnO single crystals.