DOI QR코드

DOI QR Code

Preparation of calcium phosphates by hydrothermal synthesis route

수열합성법에 의한 calcium phosphates 분말합성

  • Moon, Sung Wook (Department of Ocean Advanced Materials Convergence Engineering, Korea Maritime and Ocean University) ;
  • Lee, Byeong Woo (Department of Ocean Advanced Materials Convergence Engineering, Korea Maritime and Ocean University)
  • 문성욱 (한국해양대학교 해양신소재융합공학과) ;
  • 이병우 (한국해양대학교 해양신소재융합공학과)
  • Received : 2019.08.22
  • Accepted : 2019.09.27
  • Published : 2019.10.31

Abstract

Calcium phosphates such as hydroxyapatite (HAp), tricalcium phosphate (${\beta}$-TCP), and biphasic calcium phosphate (BCP, HAp/${\beta}$-TCP) have been prepared via hydrothermal treatment. The synthesis was conducted by reacting ($Ca(OH)_2$) aqueous solution with phosphoric acid ($H_3PO_4$) under different hydrothermal synthesis conditions (temperatures up to $150^{\circ}C$ and pH lower than 12). The effects of initial precursor Ca/P ratio (1.30, 1.50 and 1.67) and post heat treatment on the phase evolution behavior of the powders and sintered ceramics were investigated. The phases of resulting powders and sintered ceramics were controllable by adjusting the initial Ca/P ratio. A single HAp phase without any noticeable second phase was obtained for the initial Ca/P ratio of 1.67 in the overall heat treatment range. Pure ${\beta}$-TCP and biphasic calcium phosphate (HAp/${\beta}$-TCP) were synthesized from precursor solutions having Ca/P molar ratios of 1.30 and 1.50, respectively, after having been heat treated at $900^{\circ}C$ or higher. Dense ceramics with translucency were obtained at considerably lower sintering temperatures.

인산칼슘(hydroxyapatite(HAp), ${\beta}$-tricalcium phosphate(${\beta}$-TCP) 및 HAp와 ${\beta}$-TCP가 혼합된 2상 인산칼슘(BCP, HA/${\beta}$-TCP))들을 수열합성법을 통해 합성하였다. 여러 수열합성 조건(최고온도 $150^{\circ}C$ 및 pH 12 이하)에서 수산화칼슘($Ca(OH)_2$) 수용액과 인산($H_3PO_4$) 용액을 반응시켜 얻은 침전물을 수열합성에 이용하였다. 초기 전구체 Ca/P 비율을 1.30, 1.50 및 1.67로 조절하였으며 이 조성비와 합성 후 열처리가 분말 및 소결체의 상합성에 미치는 영향에 대해 조사하였다. 초기 전구체 Ca/P 비율을 조절함으로써 분말 및 소결체의 상의 조절이 가능하였다. Ca/P 비율이 1.67일 경우 모든 열처리 온도에서 분말 및 소결체 모두에서 HAp 단일 상이 합성되었다. Ca/P 비율이 1.30과 1.50에서 $900^{\circ}C$ 이상 열처리 할 경우 각각 순수한 ${\beta}$-TCP와 BCP(HAp/${\beta}$-TCP)가 합성되었다. 반응성 높은 미세한 분말을 이용하여 소결함으로써 미세한 입경을 가지며 투광성을 가지는 소결체들을 저온에서 얻을 수 있었다.

Keywords

References

  1. N. Eliaz and N. Metoki, "Calcium phosphate bioceramics: A review of their history, structure, properties, coating technologies and biomedical applications", Mater. 10 (2017) 334. https://doi.org/10.3390/ma10040334
  2. W. Habraken, P. Habibovic, M. Epple and M. Bohner, "Calcium phosphates in biomedical applications: materials for the future?", Mater. Today 19 (2016) 69. https://doi.org/10.1016/j.mattod.2015.10.008
  3. A. Dudek and L. Adamczyk, "Properties of hydroxyapatite layers used for implant coating", Optica Aplicata. 13 (2013) 143.
  4. C. Wu and Y. Xiao, "Evaluation of the in vitro bioactivity of bioceramics", Bone Tissue Regen. Insights 2 (2009) 25.
  5. J. Marchi, P. Greil, J.C. Bressiani, A. Bressiani and F. Muller, "Influence of synthesis conditions on the characteristics of biphasic calcium phosphate powders", Appl. Ceram. Technol. 6 (2009) 60. https://doi.org/10.1111/j.1744-7402.2008.02254.x
  6. S. Kannan and J.M.F. Ferreira, "Synthesis and thermal stability of hydroxyapatite-${\beta}$-tricalcium phosphate composites with cosubstituted sodium, magnesium, and fluorine", Chem. Mater. 18 (2006) 198. https://doi.org/10.1021/cm051966i
  7. E.C. Victoria and F.D. Gnanam, "Synthesis and characterization of biphasic calcium phosphate", Trends Biomater. Artif. Organs 16 (2002) 12.
  8. D.M.B. Wolff, E.G. Ramalho1 and W. Acchar, "Phase transition behaviour of tricalcium phosphate (TCP) doped with MgO and $TiO_2$ as additives", Mater, Sci. Forum 530-531 (2006) 581. https://doi.org/10.4028/www.scientific.net/MSF.530-531.581
  9. R.G. Carrodeguas and S.De Aza, "${\alpha}$-Tricalcium phosphate: synthesis, properties and biomedical applications", Acta Biomater. 7 (2011) 3536. https://doi.org/10.1016/j.actbio.2011.06.019
  10. J.S. Earl, D.J. Wood and S.J. Milne, "Hydrothermal synthesis of hydroxyapatite", J. Phys.: Confer. Series 26 (2006) 268. https://doi.org/10.1088/1742-6596/26/1/064
  11. O.R. Bingol and C. Durucan, "Hydrothermal synthesis of hydroxyl-apatite from calcium sulfate hemihydrate", Am. J. Biomed. Sci. 4 (2012) 50.
  12. H.S. Liu, T.S. Chin, L.S. Lai, S.Y. Chiu, K.H. Chung, C.S. Chang and M.T. Lui, "Hydroxyapatite synthesized by a simplified hydrothermal method", Ceram. Inter. 23 (1997) 19. https://doi.org/10.1016/0272-8842(95)00135-2
  13. J.H. Koo, J.S. Yang, S.J. Cho and B.W. Lee, "Synthesis of zinc oxide nanoparticles via aqueous solution routes", J. Korea Cryst. Growth. Cryst. Technol. 26 (2016) 175. https://doi.org/10.6111/JKCGCT.2016.26.5.175
  14. O. Mekmene, S. Quillard, T. Rouillon, J.M. Bouler, M. Piot and F. Gaucheron, "Effects of pH and Ca/P molar ratio on the quantity and crystalline structure of calcium phosphates obtained from aqueous solutions", Dairy Sci. Technol. 89 (2009) 301. https://doi.org/10.1051/dst/2009019
  15. A.K. Nayak, "Hydroxyapatite synthesis methodologies: An overview", Inter. J. Chem. Tech. Res. 2 (2010) 903.
  16. D.S. Gouveia, A.H.A. Bressiani and J.C. Bressiani, "Phosphoric acid rate addition effect in the hydroxyapatite synthesis by neutralization method", Mater. Sci. Forum 530-531 (2006) 593. https://doi.org/10.4028/www.scientific.net/MSF.530-531.593
  17. S. Ramesh, K.L. Aw, R. Tolouei, M. Amiriyan, C.Y. Tan, M. Hamdi, J. Purbolaksono, A. Hassan and W.D. Teng, "Sintering properties of hydroxyapatite powders prepared using different methods", Ceram. Int. 39 (2013) 111. https://doi.org/10.1016/j.ceramint.2012.05.103