• Title/Summary/Keyword: hydroponic greenhouses

Search Result 15, Processing Time 0.027 seconds

Potential of multispectral imaging for maturity classification and recognition of oriental melon

  • Seongmin Lee;Kyoung-Chul Kim;Kangjin Lee;Jinhwan Ryu;Youngki Hong;Byeong-Hyo Cho
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.3
    • /
    • pp.485-496
    • /
    • 2023
  • In this study, we aimed to apply multispectral imaging (713 - 920 nm, 10 bands) for maturity classification and recognition of oriental melons grown in hydroponic greenhouses. A total of 20 oriental melons were selected, and time series multispectral imaging of oriental melons was 7 - 9 times for each sample from April 21, 2023, to May 12, 2023. We used several approaches, such as Savitzky-Golay (SG), standard normal variate (SNV), and Combination of SG and SNV (SG + SNV), for pre-processing the multispectral data. As a result, 713 - 759 nm bands were preprocessed with SG for the maturity classification of oriental melons. Additionally, a Light Gradient Boosting Machine (LightGBM) was used to train the recognition model for oriental melon. R2 of recognition model were 0.92, 0.91 for the training and validation sets, respectively, and the F-scores were 96.6 and 79.4% for the training and testing sets, respectively. Therefore, multispectral imaging in the range of 713 - 920 nm can be used to classify oriental melons maturity and recognize their fruits.

Engineering Approach to Crop Production in Space (우주에서 작물 생산을 위한 공학적 접근)

  • Kim Yong-Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.14 no.3
    • /
    • pp.218-231
    • /
    • 2005
  • This paper reviews the engineering approach needed to support humans during their long-term missions in space. This approach includes closed plant production systems under microgravity or low pressure, mass recycling, air revitalization, water purification, waste management, elimination of trace contaminants, lighting, and nutrient delivery systems in controlled ecological life support system (CELSS). Requirements of crops f3r space use are high production, edibility, digestibility, many culinary uses, capability of automation, short stems, and high transpiration. Low pressure on Mars is considered to be a major obstacle for the design of greenhouses fer crop production. However interest in Mars inflatable greenhouse applicable to planetary surface has increased. Structure, internal pressure, material, method of lighting, and shielding are principal design parameters for the inflatable greenhouse. The inflatable greenhouse operating at low pressure can reduce the structural mass and atmosphere leakage rate. Plants growing at reduced pressure show an increasing transpiration rates and a high water loss. Vapor pressure increases as moisture is added to the air through transpiration or evaporation from leaks in the hydroponic system. Fluctuations in vapor pressure will significantly influence total pressure in a closed system. Thus hydroponic systems should be as tight as possible to reduce the quantity of water that evaporates from leaks. And the environmental control system to maintain high relative humidity at low pressure should be developed. The essence of technologies associated with CELSS can support human lift even at extremely harsh conditions such as in deserts, polar regions, and under the ocean on Earth as well as in space.

Damage and Seasonal Occurrence of Major Insect Pests by Cropping Period in Environmentally Friendly Lettuce Greenhouse (친환경 시설상추에서 작기별 주요 해충의 피해와 발생소장)

  • Jeon, Heung-Yong;Kim, Hyeong-Hwan
    • Korean journal of applied entomology
    • /
    • v.45 no.3 s.144
    • /
    • pp.275-282
    • /
    • 2006
  • Insect pests attacking the leaf of lettuce (Lactuca sativa) were surveyed in environmentally frendly leaf-lettuce-greenhouses in Hwaseong, Namyangju, and Suwon from 2003 to 2004. Sixteen insect species of eleven families in eight orders were collected in greenhouses. Among them, Acyrthosiphon solani, Frankliniella occidentalis, and Autographa nigrisigna were the most serious pest species because of their damage ratio was over 30%. Population of Acyrthosiphon solani showed the highest peak one or two times between mid-April and early June in both the second and the third cropping period. Frankliniella occidentalis reached the highest peak one or two times, the first peak between mid-June and the late July, and the second peak between the mid-August and the mid-October.Autographa nigrisigna reached the highest peak one or times between early June and late July and in the mid-August to late October. The highest peak occurrence of A. solami was observed in early June as many as 4,836 nymphs and adults per 100 leaves. And for F. occidentalis it was in early July occurring 437 larvae and adults per 100 leaves, for A. nigrisigna in early October occurring 42 larvae per 100 leaves. The density of F. occidentalis and its damage as well was greater in soil culture than in hydroponic culture, but in case of both A. solani and A. nigrisigna no such difference between cropping systems was found.

Effect of Cultivation Method, Harvest Season and Preservative Solution on the Quality and Vase Life of Cut Rose 'Rote Rose' (롯데로제 장미의 재배방법, 수확시기 및 보존제 종류가 절화 품질과 수명에 미치는 영향)

  • Cho, Mee Sook;Hwang, Seung Jae;Jeong, Byoung Ryong
    • Horticultural Science & Technology
    • /
    • v.19 no.1
    • /
    • pp.71-77
    • /
    • 2001
  • Experiments were conducted to evaluate quality and vase life of cut rose 'Rote Rose' cultivated in soil or hydroponically in rockwool. Rose flower stems harvested in commercial greenhouses in Kimhae on May 27 and June 14, 1998 were transported for about two hours to a laboratory and recut in water to an uniform stem length of 45cm. The rose flowers harvested on the same day were displayed at a density of $10cm{\times}10cm$ and were subjected to the same environmental conditions in a growth chamber. The stems were put in four different preservative solutions, 0.5% Chrysal RVB, BS (2% sucrose+200ppm 8HQS+0.3% Chrysal RVB), Sonk1 (BS+0.1mM ethionine), and double distilled $H_2O$. Flower stems harvested on May 27 were displayed at $18{\pm}1^{\circ}C$, RH 60-70%, and light intensity of 220lux provided by fluorescent lamps for $16h{\cdot}d^{-1}$. Flower stems harvested on June 14 were displayed at $25{\pm}1^{\circ}C$, RH 70-80%, and light intensity of 220lux provided by fluorescent lamps for $16h{\cdot}d^{-1}$. Fresh weight and flower diameter were affected by cultivation method, and were greater in hydroponically-grown roses than in soil-grown roses. Among the preservative solutions, BS and Sonk1 were superior to Chrysal RVB in terms of prolonging vase life. Vase life extension in Chrysal RVB, BS and Sonk1 over the control was about one day in both display temperatures. At $18^{\circ}C$ vase life was maintained for three to four additional days as compared to that at $25^{\circ}C$.

  • PDF

Fertilizer Effect of Waste Nutrient Solution in Greenhouses for Young Radish Cultivation (열무 재배를 위한 시설하우스 폐양액의 비료 효과)

  • Hong, Youngsin;Moon, Jongpil;Park, Minjung;Son, Jinkwan;Yun, Sungwook
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.460-467
    • /
    • 2022
  • The purpose of this study is to enhance utilization of the waste nutrient solution (WNS) disposed at the hydroponic greenhouse. Several sets of testing were conducted to examine the effects of WNS: (a) a fertilizer effect, (b) soil column leaching, and (c) crop cultivation. The fertilizer effect test was applied in young radish cultivation by examining the growth characteristics of young radish and soil based on inorganic nitrogen according to the soil treatment of the nitrogen fertilizer (NF) and the WNS. The fertilizer effects and crop cultivation test were conducted with five treatments (A-E): A, non-treatment (water); B, 100% of NF; C, 70% of NF + 30% of WNS; D, 50% of NF + 50% of WNS; and E, 30% of NF + 70% of WNS. The soil column leaching test was conducted with three treatments: non-treatment (water), 100% of NF, 50% of WNS + 50% of NF. As a result, the chemical properties of the WNS were pH 6.0, EC 2.4dS·m-1, total phosphorus (T-P) 28mg·L-1, ammonium nitrogen (NH4-N) 5.0mg·L-1, and nitrate nitrogen (NO3-N) 301mg·L-1. The chemical properties of the soil were pH 5.51, EC 0.31dS/m, organic matter 2.08g·kg-1, NO3-N 9.64mg·kg-1, and NH4-N 3.20mg·kg-1. The results of fertilizer effects showed that the ratio of 50% or less of NF and 50% or more of WNS was high in young radish growth. There was no statistically significant difference between the soil chemistry in the C-E treatments where WNS was mixed with NF and the B treatment where only NF was applied. As a result of the soil column leaching test, there was no significant difference in the concentrations of NO3 and NH4 in the treatment of 100% of NF and 50% of NF + 50% of WNS. The study indicates, if the mixed fertilizer of WNS and NF is applied in the soil cultivation of young radish, it will reduce the use of NF and environmental pollution. This also helps reduce production costs on farmers and increase the yield of young radish.