• Title/Summary/Keyword: hydrophobic resin

Search Result 65, Processing Time 0.026 seconds

MICROLEAKAGE AND WATER STABILITY OF RESIN CEMENTS

  • Choi Sun-Young;Lee Sun-Hyung;Yang Jae-Ho;Han Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.369-378
    • /
    • 2003
  • Statement of Problem: Recently, resin cements have become more widely used and have been accepted as prominent luting cements. Current resin cements exhibit less microleakage than conventional luting cements. However, the constant contact with water and exposure to occlusal forces increase microleakage even in resin cements inevitably. Most bonding resins have been modified to contain a hydrophilic resin such as 2-hydroxyethylmethacrylate (HEMA) to overcome some of the problems associated with the hydrophobic nature of bonding resins. By virtue of these modifications, bonding resins absorb a significant amount of water, and there may also be significant stresses at bonding interfaces, which may adversely affect the longevity of restorations. Therefore the reinforcement of water stability of resin cement is indispensable in future study. Purpose: This study was conducted to examine the influence of water retention on microleakage of two resin cements over the period of 6 months. Materials and Methods: 32 extracted human teeth were used to test the microleakage of a single full veneer crown. Two resin cements with different components and adhesive properties - Panavia F (Kuraray Co., Osaka, Japan) and Super-Bond C&B (Sun Medical Co., Kyoto, Japan)- were investigated. The storage medium was the physiological saline solution changed every week for 1 month, 3 months, and 6 months. One group was tested after storage for 1 day. At the end of the each storage period, all specimens were exposed to thermocycling from $5^{\circ}C$ to $55^{\circ}C$ of 500 cycles and chewing simulation of 50,000 cycles, and then stained with 50% silver nitrate solution. The linear penetration of microleakage was measured using a stereoscopic microscope at ${\times}40$ magnification and a digital traveling micrometer with an accuracy of ${\pm}3{\mu}m$. Values were analyzed using two-way ANOVA test, Duncan's multiple range tests (DMRT). Results : Statistically significant difference of microleakage was shown in the 3-month group compared with the1-day or 1-month group in both systems (p<0.05) and there were statistically significant differences in microleakage between the 3-month group and the 6-month group in both systems (p<0.05). The two systems showed different tendency in the course of increased microleakage during 3 months. In Panavia F, microleakage increased slowly throughout the periods. In Super-Bond C&B, there was no significant increase of microleakage for 1 month, but there was statistically significant increase of microleakage for the next 2 months. For the mean microleakage for each period, in the 3-month group, microleakage of Super-Bond C&B was significantly greater than that of Panavia F. On the other hand, in the 6-month group, microleakage of Panavia F was significantly greater than that of Super-Bond C&B (p<0.05). Conclusion: Within the limitation of this study, water retention of two different bonding systems influence microleakage of resin cements. Further studies with the longer observation periods in viro are required in order to investigate water stability and the bonding durability of the resin cement. CLINICAL IMPLICATIONS Microleakage at the Cement-tooth interfaces did not necessarily result in the failure of the crowns. But it is considered to be a major factor influening the longerity of restorations. Further clinical approaches for decreasing the amount of microleakage are required.

Hydrophobic Characteristics of a Silicone Resin Surface Produced by Replicating an Electric Discharge Machined Surface (방전가공면을 복제한 실리콘수지 표면의 발수특성연구)

  • Kim, Y.H.;Hong, S.K.;Lee, S.Y.;Lee, S.H.;Kim, K.H.;Kang, J.J.
    • Transactions of Materials Processing
    • /
    • v.22 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • In this study, a micro/nano-random-pattern-structure surface was machined by electric discharge machining (EDM) followed by replicating the EDM surface with a silicone elastomer having low energy and greater hydrophobicity. The variation of hydrophobicity was of prime interest and was examined as a function of the surface roughness of the replicated silicone elastomer. The hydrophobicity was evaluated by the water contact angle (WCA) measured on the relevant surface. For the experiments, the original surfaces were machined by die sinking electric discharge machining (DS-EDM) and wire cutting electric discharge machining (WC-EDM). The ranges of surface roughness were Ra $0.8{\sim}19{\mu}m$ for the DS-EDM and Ra $0.5{\sim}4.7{\mu}m$ for the WC-EDM. In order to fabricate a hydrophobic surface, the EDM surfaces were directly replicated using a liquid-state silicone elastomer, which was thermally cured. The measured WCA on the replicated surfaces for DS-EDM was in the range of $115{\sim}130^{\circ}$ and for WC-EDM the WCA was in the range of $123{\sim}150^{\circ}$. Additionally, the dynamic hydrophobicity was evaluated by measuring an advancing and a receding WCA on the replicated silicone elastomer surfaces.

Changes in Dissolved Organic Matter Composition in the Namhan River during a Heavy Rain Event (집중 강우시 남한강 내 용존 유기물의 성상 변화)

  • Oh, Seijin;Woo, Sungho;Hur, Jin;Jung, Myung-Sook;Shin, Hyun-Sang
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.697-703
    • /
    • 2009
  • In this study, changes in the composition of dissolved organic carbon (DOC) were investigated using water samples collected at a downstream site of the Namhan River near the Lake Paldang ($N37^{\circ}24^{\prime}05.33^{{\prime}{\prime}}E127^{\circ}32^{\prime}25.01^{{\prime}{\prime}}$) during a heavy rain event from July 23 to July 28, 2008. The DOC concentrations varied from 1.68 to 3.18 mg/L with the maxium value at a peak of the river water level. Each DOC sample was fractionated into three compositions including hydrophilic (Hi), hydrophobic acid (HoA) and hydrophobic neutral (HoN) fractions. The results showed that HoA was most abundant fractions, constituting 47.2~56.5% of DOC. Refractory dissolved organic carbon (R-DOC) contents were also determined by measuring the DOC concentration after 28-day dark incubation of the samples. R-DOC content was in the range from 83 to 99% of DOC and it was significantly correlated with HoA contents (r = 0.91, p<0.005), while it did not exhibit such a good correlation with the fractions of Hi and HoN (p>0.02). Our results suggest that the HoA, which is associated with humic substances, may be a major composition of refractory organic matters in rivers during storm events.

Analysis of Natural Organic Matter (NOM) Characteristics in the Geum River (금강 수계 자연유기물 특성 분석)

  • Yu, Soon-Ju;Kim, Chang-Soo;Ha, Sung-Ryong;Hwang, Jong-Yeon;Chae, Min-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.2
    • /
    • pp.125-131
    • /
    • 2005
  • Natural organic matter(NOM) is defined as the complex matrix of organic material and abundant in natural waters. It affects the performance of unit operations for water purification. Several kinds of analytical indicators such as DOC, specific ultraviolet absorbance(SUVA), apparent molecular weight (AMW), fractionation and high performance size exclusive chromatography(HPSEC) have been used to understand characteristics and variations of NOM. This study aims to evaluate the characteristics of NOM in the Geum River system comprising with stream flows and reservoirs. It was identified that SUVA denoting the portion of humic substance in water ranged within 1.60~3.36. Using resin adsorbents, dissolved organic carbon(DOC) was fractionated into three classes: hydrophobic bases(HOB), hydrophobic acids(HOA) and hydrophilic substances(HI). HI dominates in all samples, collectively accounting for more than 62% of the DOC. HOA was the second dominated fraction and it varied considerably but accounted for about 30% of the DOC. The distribution of high molecular weight(HMW) measured by HPSEC being used to determine the molecular weight distribution of aquatic humic substances was 40.1% and 38.7% in reservoir and stream flow, respectively. The distribution of low molecular weight(LMW) in stream flow was 13.2% higher than that in reservoir. And apparent molecular weight less than 1KDa, which include the molecular weight of hydrophilic organic matter, occupied with 69.2% and 68.2% in stream flow and reservoir, respectively. While the molecular weight of 1 to 100 KDa including humic substances ranged with 18.6% and 21.6% in stream flow and reservoir, respectively. Seasonal variation of refractory dissolved organic carbon was similar to that of SUVA.

Study on the Synthesis of Hydrophobic Silica and Its Application for Gas Barrier Film (소수성 실리카의 제조 및 가스차단성 필름으로의 응용에 관한 연구)

  • Yang, Kyeong Min;Chang, Mi Jung;Nam, Kwang Hyun;Chung, Dae-won
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.554-558
    • /
    • 2017
  • In order to achieve a hydrophobic surface of silica, we reacted silica nanoparticles with hexamethyldisilazane (HMDS) under various reaction conditions. Modification of the surface of silica with organic materials was confirmed by the thermogravity and elemental analysis. The modified silica displayed nearly the same morphology as to the pristine silica. The reaction of 20 g of HMDS with 1 g of silica in decalin at $200^{\circ}C$ for 6 hours was found to be the optimum reaction condition in terms of the dispersity in toluene and the surface roughness of composite films. Oxygen permeation studies of the composite film demonstrated that the modified silica enhanced a gas barrier performance.

The nanoleakage patterns of experimental hydrophobic adhesives after load cycling (Load cycling에 따른 소수성 실험용 상아질 접착제의 nanoleakage 양상)

  • Sohn, Suh-Jin;Chang, Ju-Hae;Kang, Suk-Ho;Yoo, Hyun-Mi;Cho, Byeong-Hoon;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.1
    • /
    • pp.9-19
    • /
    • 2008
  • The purpose of this study was: (1) to compare nanoleakage patterns of a conventional 3-step etch and rinse adhesive system and two experimental hydrophobic adhesive systems and (2) to investigate the change of the nanoleakage patterns after load cycling. Two kinds of hydrophobic experimental adhesives, ethanol containing adhesive (EA) and methanol containing adhesive (MA), were prepared. Thirty extracted human molars were embedded in resin blocks and occlusal thirds of the crowns were removed. The polished dentin surfaces were etched with a 35 % phosphoric acid etching gel and rinsed with water. Scotchbond Multi-Purpose (MP), EA and MA were used for bonding procedure. Z-250 composite resin was built-up on the adhesive-treated surfaces. Five teeth of each dentin adhesive group were subjected to mechanical load cycling. The teeth were sectioned into 2 mm thick slabs and then stained with 50 % ammoniacal silver nitrate. Ten specimens for each group were examined under scanning electron microscope in backscattering electron mode. All photographs were analyzed using image analysis software. Three regions of each specimen were used for evaluation of the silver uptake within the hybrid layer. The area of silver deposition was calculated and expressed in gray value. Data were statistically analyzed by two-way ANOVA and post-hoc testing of multiple comparisons was done with the Scheffe's test. Silver particles were observed in all the groups. However, silver particles were more sparsely distributed in the EA group and the MA group than in the MP group (p < .0001). There were no changes in nanoleakage patterns after load cycling.

Influence of nonthermal argon plasma on the shear bond strength between zirconia and different adhesives and luting composites after artificial aging

  • Pott, Philipp-Cornelius;Syvari, Timo-Sebastian;Stiesch, Meike;Eisenburger, Michael
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.308-314
    • /
    • 2018
  • PURPOSE. Plasma activation of hydrophobic zirconia surfaces might be suitable to improve the bond strength of luting materials. The aim of this study was to analyze the influence of nonthermal argon-plasma on the shear bond strength (SBS) between zirconia and different combinations of 10-MDP adhesive systems and luting composites after artificial aging. MATERIALS AND METHODS. Two hundred forty Y-TZP specimens were ground automatically with $165{\mu}m$ grit and water cooling. Half of the specimens received surface activation with nonthermal argon-plasma. The specimens were evenly distributed into three groups according to the adhesive systems ([Futurabond U, Futurabond M, Futurabond M + DCA], VOCO GmbH, Germany, Cuxhaven) and into further two subgroups according to the luting materials ([Bifix SE, Bifix QM], VOCO GmbH). Each specimen underwent artificial aging by thermocycling and water storage. SBS was measured in a universal testing machine. Statistical analysis was performed using ANOVA and $Scheff{\grave{e}}$ procedure with the level of significance set to 0.05. RESULTS. Surface activation with nonthermal plasma did not improve the bond strength between zirconia and the tested combinations of adhesive systems and luting materials. The plasma-activation trended to reveal higher bond strength if the self-etch luting material (Bifix SE) was used, irrespective of the adhesive system. CONCLUSION. Plasma-activation seems to be suitable to improve bond strength between zirconia and self-etch resin materials. However, further research is necessary to identify the influence of varying plasma-parameters.

Effect of adhesive hydrophobicity on microtensile bond strength of low-shrinkage silorane resin to dentin (접착시스템의 소수성이 Low-shrinkage silorane resin과 상아질의 미세인장강도에 미치는 영향)

  • Cho, So-Yeun;Kang, Hyun-Young;Kim, Kyoung-A;Yu, Mi-Kyung;Lee, Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.4
    • /
    • pp.280-289
    • /
    • 2011
  • Objectives: The purpose of this study was to evaluate ${\mu}TBS$ (microtensile bond strength) of current dentin bonding adhesives which have different hydrophobicity with low-shrinkage silorane resin. Materials and Methods: Thirty-six human third molars were used. Middle dentin was exposed. The teeth were randomly assigned to nine experimental groups: Silorane self-etch adhesives (SS), SS + phosphoric acid etching (SS + pa), Adper easy bond (AE), AE + Silorane system bonding (AE + SSb), Clearfil SE bond (CSE), CSE + SSb, All-Bond 2 (AB2), AB2 + SSb, All-Bond 3 (AB3). After adhesive's were applied, the clinical crowns were restored with Filtek LS (3M ESPE). The 0.8 mm ${\times}$ 0.8 mm sticks were submitted to a tensile load using a Micro Tensile Tester (Bisco Inc.). Water sorption was measured to estimate hydrophobicity adhesives. Results: ${\mu}TBS$ of silorane resin to 5 adhesives: SS, 23.2 MPa; CSE, 19.4 MPa; AB3, 30.3 MPa; AB2 and AE, no bond. Additional layering of SSb: CSE + SSb, 26.2 MPa; AB2 + SSb, 33.9 MPa; AE + SSb, no bond. High value of ${\mu}TBS$ was related to cohesive failure. SS showed the lowest water sorption. AE showed the highest solubility. Conclusions: The hydrophobicity of adhesive increased, and silorane resin bond-strength was also increased. Additional hydrophobic adhesive layer did not increase the bond-strength to silorane resin except AB2 + SSb. All-Bond 3 showed similar ${\mu}TBS$ & water sorption with SS. By these facts, we could reach a conclusion that All-Bond 3 is a competitive adhesive which can replace the Silorane adhesive system.

Speciation of Arsenic from Soil Organic Matter in Abandoned Gold and Silver Mines, Korea

  • Ko, Il-Won;Kim, Kyoung-Woong;Hur, Hor-Gil
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.1
    • /
    • pp.36-44
    • /
    • 2008
  • Organic forms of arsenic (As) were determined through fractionation procedure of soil organic matter (SOM) in soil, sediments and mine tailing samples from the Myungbong, Dongil, and Okdong mining areas of southern Korea. An alkaline extraction method was applied to soil samples followed by the fractionation procedures of SOM by the DAX-8 and XAD-4 resin adsorption method. Major fraction of organic As species (42% to 98%) was found in acid-soluble fraction, whereas minor fraction (0.1 % to 67.8%) was present in the humic-associated As. In acid-soluble fractions, the transphillic- and hydrophilic-associated As were dominant in addition to As binding with humic and fulvic SOM. Arsenic binding was the strongest between pH 6 to 8 and reduced to about 70% at both low and high pH regions. The amount of both transphillic and hydrophillic associated As was less changed than humic and fulvic-associated As, in both low and high pH regions. This apparently indicates that As has stronger affinity towards hydrophillic rather than hydrophobic organics. From the experimental observation of As-binding SOM in natural soil, the ligand exchange model may be a feasible explanation of transphillic and hydrophillic affinity of As.

Downstream Process for the Production of Yeast Extract Using Brewer's Yeast Cells

  • In Man-Jin;Kim Dong Chung;Chae Hee Jeong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.85-90
    • /
    • 2005
  • A downstream process was developed for the production of yeast extract from brewer's yeast cells. Various downstream processing conditions including clarification, debittering, and the Maillard reaction were considered in the development of the process. This simple and economic clarification process used flocculating agents, specifically calcium chloride ($1\%$). After the clarification step, a Maillard reaction is initiated as a flavor-enhancing step. By investigating the effects of several operation parameters, including the type of sugar added, sugar dosage, glycine addition, and temperature, on the degree of browning (DB), giucose addition and reaction temperature were found to have significant effects on DB. A synthetic adsorption resin (HP20) was used for the debittering process, which induced a compositional change of the hydrophobic amino acids in the yeast hydrolysate, thereby reducing the bitter taste. The overall dry matter yield and protein yield for the entire process, including the downstream process proposed for the production of brewer's yeast extract were 50 and $50\%$, respectively.