Changes in Dissolved Organic Matter Composition in the Namhan River during a Heavy Rain Event

집중 강우시 남한강 내 용존 유기물의 성상 변화

  • Oh, Seijin (Department of Environmental Engineering, Seoul National University of Technology) ;
  • Woo, Sungho (Department of Environmental Engineering, Seoul National University of Technology) ;
  • Hur, Jin (Department of Earth and Environmental Science, Sejong University) ;
  • Jung, Myung-Sook (Han-river Environment Research Laboratory) ;
  • Shin, Hyun-Sang (Department of Environmental Engineering, Seoul National University of Technology)
  • 오세진 (서울산업대학교 환경공학과) ;
  • 우성호 (서울산업대학교 환경공학과) ;
  • 허진 (세종대학교 지구환경과학과) ;
  • 정명숙 (국립환경과학원 한강물환경연구소) ;
  • 신현상 (서울산업대학교 환경공학과)
  • Received : 2009.05.01
  • Accepted : 2009.07.03
  • Published : 2009.09.30

Abstract

In this study, changes in the composition of dissolved organic carbon (DOC) were investigated using water samples collected at a downstream site of the Namhan River near the Lake Paldang ($N37^{\circ}24^{\prime}05.33^{{\prime}{\prime}}E127^{\circ}32^{\prime}25.01^{{\prime}{\prime}}$) during a heavy rain event from July 23 to July 28, 2008. The DOC concentrations varied from 1.68 to 3.18 mg/L with the maxium value at a peak of the river water level. Each DOC sample was fractionated into three compositions including hydrophilic (Hi), hydrophobic acid (HoA) and hydrophobic neutral (HoN) fractions. The results showed that HoA was most abundant fractions, constituting 47.2~56.5% of DOC. Refractory dissolved organic carbon (R-DOC) contents were also determined by measuring the DOC concentration after 28-day dark incubation of the samples. R-DOC content was in the range from 83 to 99% of DOC and it was significantly correlated with HoA contents (r = 0.91, p<0.005), while it did not exhibit such a good correlation with the fractions of Hi and HoN (p>0.02). Our results suggest that the HoA, which is associated with humic substances, may be a major composition of refractory organic matters in rivers during storm events.

Keywords

References

  1. 국립환경과학원(2005). 한강수계 오염총량관리 대상물질 연구사업. 한강수계관리위원회
  2. 김재구, 김범철(2005). 강우기간 동안 소양호내 DOC와 SUVA의 수직 및 수평분포. 공동춘계학술발표회 논문집, 한국물환경학회.대한상하수도 학회, p,10
  3. 김재구, 신명선, 장창원, 정성민, 김범철(2007). 한강수계 주요하천과 호수 내 TOC와 DOC 분포 및 BOD와 COD 산화율 비교. 수질보전 한국물환경학회지, 23(1), pp. 72-80
  4. 김종민, 노혜란, 허성남, 양희정, 박준대(2005). 강우 및 유입 하천수가 팔당호 수질에 미치는 영향분석. 수질보전한국물환경학회지, 21(3), pp. 277-283
  5. 박정민, 허성남, 임태효, 신찬기(2007). XAD 수지분획에 의한 용존유기물질 특성 연구. 대한위생학회지, 22(4), pp.23-32
  6. 박혜경, 이유희, 정동일(2004). 강우기 및 평수기의 팔당호 유기물 수지산정. Korean J. Limnol., 37(3), pp. 272-281
  7. 박혜경, 신유나, 변명섭, 김범철, 이욱세(2005). 팔당호의 유기물 수지산성 및 내생산유기물 기여도 평가. 공동춘계학술발표회 논문집, 한국물환경학회.대한상수도학회, pp. 119-122
  8. 유순주, 김창수, 하성룡, 황종연, 채민희(2005). 금강 수계 자연유기물 특성 분석. 수질보전 한국물환경학회지, 21(2), pp. 125-131
  9. 이두희, 이승식, 신현상(2008). 토양 휴믹물질의 화학적 분광학적 특성에 따른 페난트렌 흡착상수와의 상관성 규명에 대한 연구. J. KSEE, 30(11), pp. 1067-1074
  10. 주기재, 박성배, 이상균, 장광현, 정광석(2004). 장마기의 강우가 낙동강 하류(물금) 수질에 미치는 영향. 낙동강 조사월보, 89(5), pp. 3-22
  11. 한강홍수통제소(2008). http://www.hrfco.go.kr/html/flood/flood-Class.jsp/
  12. Aiken, G. R. (1985). Isolation and concentration techniques for aquatic humic substances,: In Humic substances in soil, sediment and water: geochemistry and isolation., G. R. Aiken, D. M. McKnight, R. L. Wershaw, and P. MacCarthy(eds.), John Wiley and Sons, New York, USA
  13. Aoki, S., Fuse, Y., and Yamada, E. (2004). Determination of humic substances and other dissolved organic matter and their effects on the increase of COD in Lake Biwa. Anal. Sci., 20, pp. 159-164 https://doi.org/10.2116/analsci.20.159
  14. Chin, Y., Aiken, G., and O'loughlin, E. (1994). Molecular weight, polydisperisty, and spectroscopic properties of aquatic humuc substances. Environ. Sci. Technol., 28, pp. 1853-858 https://doi.org/10.1021/es00060a015
  15. Choi, K., Imai, A., Matsushige, K., Nagai, T., Kim, Y. H., and Kim, B. (2003). Photoalteration in biodegradability and chemical compositions of algae- derived dissolved organic matter. Korean J. Limnol., 36(3), pp. 235-241
  16. Curtis, M. A. and Rogers, L. B. (1981). Effect of molecular size, ionic strength, and pH on retentions of aromatic acids on XAD-8 resins. Anal. Chem., 53(14), pp. 2347-2349 https://doi.org/10.1021/ac00237a050
  17. Edzwald, J. K., Becker, W. C., and Wattier, K. L. (1985). Surrogate parameters for monitoring organic matter and THM precursors. Journal of American Water Works Association, 77(4), pp. 122-132 https://doi.org/10.1002/j.1551-8833.1985.tb05521.x
  18. Imai, A., Fukushima, T., Matsushige, K., Kim, Y. H., and Choi, K. (2002). Characterization of dissolved organic matter in effluents from wastewater treatment plants. Wat. Res., 36, pp. 859-870 https://doi.org/10.1016/S0043-1354(01)00283-4
  19. Kim, B., Choi, K., Kim, C., Lee, U., and Kim, Y. (2000). Effects of the summer monsoon on the distribution and loading of organic carbon in a deep reservoir. Lake Soyang, Korea. Wat. Res., 34(14), pp. 3495-3504 https://doi.org/10.1016/S0043-1354(00)00104-4
  20. Leenheer, J. A. (1981). Comparative approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters. Environ. Sci. Technol., 15, pp. 578-587 https://doi.org/10.1021/es00087a010
  21. Li, F., Yuasa, A., Chiharada, H., and Matsui, Y. (2003). Storm impacts upon the composition of organic matrices in Nagara River-A study based on molecular weight and activated carbon adsorbability. Wat. Res., 36, pp. 4027-4037 https://doi.org/10.1016/S0043-1354(03)00330-0
  22. Li, F., Yuasa, A., Muraki, Y., and Matsui, Y. (2005). Impacts of a heavy storm of rain upon dissolved and particulated organic C, N and P in the main river of a vegetation-rich basin area in Japan. Sci. Total Environ., 345, pp. 99-113 https://doi.org/10.1016/j.scitotenv.2004.11.004
  23. Namour, Ph. and Muller, M. C. (1998). Fractionation of organic matter from wastewater treatment plants before and after a 21-day biodegradability test: a physical-chemical method for measurement of the refractory part of effluents. Wat. Res., 32(7), pp. 2224-2231 https://doi.org/10.1016/S0043-1354(97)00428-4
  24. Servais, P., Anzil, V., and Ventesque, C. (1989). Simple method for determination of biodegradable dissolved organic carbon in water. Applied and Environmental Microbiology, 55(10), pp. 2732-2734
  25. Shin, H. S. and Moon, H. (1996). An "Average" structure proposed for soil fulvic acid aided by DEPT/QUAT $^{13}C$ NMR pulse techniques. Soil Science, 161, pp. 250-256 https://doi.org/10.1097/00010694-199604000-00006
  26. Stevenson, F. J. (1985). Geochemistry of soil humic substance, in : Humic Substances in soil, sediment and water, G. R. Aiken, D. M. Mcknight, and R. L. Warshaw (eds.), John Wiley and Sons, New York, USA
  27. Suffet, I. H. and MacCarthy, P. (1989). Aquatic Humic Substances: Influence on Fate and Treatment of Pollutants, ACS, Washington DC., pp. 385-813
  28. Thurman, E. M. (1985). Organic Geochemistry of Natural Water. Kluwer Academic Publisher, Denver, Colorado, USA
  29. Thurman, E. M. and Malcolm, R. L. (1981). Preparative isolation of aquatic humic substances. Environ. Sci. Technol., 15, pp. 463-466 https://doi.org/10.1021/es00086a012