• Title/Summary/Keyword: hydroperoxy radical

Search Result 7, Processing Time 0.02 seconds

Measurements of hydrogen peroxide($H_2O$$_2$) in Rainwater at Sihwa (시화호 유역 강수 중 hydrogen peroxide($H_2O$$_2$) 농도 변화 분석)

  • 최성원;장유운;이강웅;이미혜
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.04a
    • /
    • pp.111-112
    • /
    • 2002
  • 대기 중에 존재하는 hydrogen peroxide($H_2O$$_2$)는 특별한 source를 통해 배출되기보다는 오존이 광분해 되어 수증기와 반응하여 생성된 hydroperoxy radical (HO$_2$)의 self-reaction이나, 대기 중으로 배출된 VOCs의 산화 과정과 같은 광화학적 기원으로 생성된다. 이렇게 생성된 $H_2O$는 오존(O$_3$), hydroxy radical(OH)과 함께 대기 중으로 배출되는 물질과 반응하여 그 농도를 감소시키는 산화제를 역할을 한다. (중략)

  • PDF

Measurement of Atmospheric Nitrous Acid(HONO) using DNPH/HPLC in Seoul (DNPH/HPLC에 의한 서울시 대기 중의 Nitrous Acid 측정)

  • 정용국;홍상범;이재훈
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2001.11a
    • /
    • pp.325-326
    • /
    • 2001
  • 오존은 태양광선의 존재 하에 질소산화물과 VOCs가 관련하여 발생하는 생성물이다. 대기중의 VOCs 는 히드록실 라디칼(hydroxyl radical, OHㆍ)과 같은 자유 라디칼(free radical)과 반응하여 하이드로퍼옥시 라디칼(hydroperoxy radical, HO$_2$ㆍ)과 알킬 퍼옥시 라디칼(alkyl peroxy radical, RO$_2$ㆍ)을 생성해 낸다. 이 퍼옥시 라디칼들은 NO를 NO$_2$ㆍ로 산화시키며 또한 히드록실 라디칼을 재생하며 이 히드록실 라디칼은 다시 VOCs와 반응한다. 그리고, 이때 산화된 NO$_2$는 햇빛에 의해 NO와 자유산소원자(free oxygen atom)로 광분해 되는데, 여기서 생성된 자유산소인자는 산소분자와 반응하여 오존을 생성한다. (중략)

  • PDF

Function of the Water Soluble Browning Reaction Products Isolated from Korean Red Ginseng 2. Linoleic acid, Ox-brain autoxidant and Fe$^{2+}$ ADP/NAD system (홍삼으로부터 분리한 수용성 갈변물질의 기능성 연구 2. Linoleic acid, Ox-brain autoxidant및 Fe$^{2+}$ ADP/NADP system에서 항산화 활성 중심으로)

  • 이종원;손형옥;도재호
    • Journal of Ginseng Research
    • /
    • v.24 no.1
    • /
    • pp.35-40
    • /
    • 2000
  • The purpose of this study was to investigate the antioxidant activities of water soluble browning reaction products (WS-BRPs) isolated 5\ulcorneron korea red ginseng. Antioxidant activities of WS-BRPs were examined with the various systems. All three WS-BRPs (L, S-1 and S-2) were found to have an ability to linoleic acid, Ox-brain autoxidant, Fe$^{2+}$ ADP/NAD system and cumene hydroperoxide system. Especially, S-2 was had the strongest activity of theses three WS-BRPs to scavenge free radicals such as more effective than S-1, L. MDA determination showed the antioxidant effect on linoleic acid oxidation inhibition ratio of 22.5%, 31.7%, 31.9% and 33.5%, respectivity Especially; Ox-brain autoxidant was strong inhibited activity by 49.52%,62,44,97.54% by addition of various concentration. But three WS-BRPs showed weak inhibitory activity on lipid peroxidation in rat hepatic microsomes induced enzymatically and nonenzymaticallyly

  • PDF

Preferential Peroxidase Activity of Prostaglandin Endoperoxide H Synthase for Lipid Peroxides

  • Yun, Seol-Ryung;Han, Su-Kyong;Song, In-Seok
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.94-94
    • /
    • 2001
  • Prostaglandin endoperoxide H synthase (PGHS) catalyzes the committed step in prostaglandins and thromboxane A$_2$-- oxygenation of arachidonic acid to the hydroperoxy endoperoxide PGG$_2$, followed by reduction PGG$_2$to the alcohol PGH$_2$. The two reactions by PGHS -- cyclooxygenase and peroxidase -- occur at distinct but structurally and functionally interconnected sites. The peroxidase reaction occurs at a heme-containing active site located near the protein surface. The cyclooxygenase reaction occurs in a hydrophobic channel in the core of the enzyme. Initially a peroxide reacts with the heme group, yielding Compound I and an alcohol derived from the oxidizing peroxide. Compound I next undergoes an intramolecular reduction by a single electron traveling from Tyr385 along the peptide chain to the proximal heme ligand, His388, and finally to the heme group. Following the binding of arachidonic acid, Tyr385 tyrosyl radical initiates the cyclooxygenase reaction by abstracting the 13-pro(5) hydrogen atom to give an arachidonyl radical, which sequentially reacts with two molecules of oxygen to yield PGG$_2$. In order to characterize PGHS peroxidase active site, we examined various lipid peroxides with purified recombinant ovine PGHS proteins and determined the rate constants. The results have shown that twenty-carbon unsaturated fatty acid hydroperoxides have similar efficiency in peroxidation by PGHS, irrespective of either the location of hydroperoxy group or the number of double bonds. It was also confirmed by the subsequent study with PGHS peroxidase active site mutants.

  • PDF

PREVENTION OF HYDROXYL RADICAL-INDUCED ERYTHROCYTE HEMOLYSIS BY PROTEIN THIOLS

  • Youn, Hong-Duk;Packer, Lester;Matsugo, Seiichi
    • Journal of Photoscience
    • /
    • v.4 no.3
    • /
    • pp.133-140
    • /
    • 1997
  • A system for studying oxidative hemolysis has been used by controling UV-irradiation and concentration of a novel molecular probe, N,N'-bis(2-hydroperoxy-2-methoxyethyl)-1,4,5,8-naphthalenetetra-carboxylic diimide (NP-III), which generates hydroxyl radical upon longer wavelength photoirradiation (> 350 nm). NP-III induces 25~30% of hemolysis at low concentration (50 $\mu$M) for 3h-irradiation of UVA. The simultaneous treatment of N-ethylmaleimide (NEM) with NP-IH completely hemotyzed erythrocytes under the same conditions as NP-III alone by both decreasing thiol group and increasing lipid peroxidation in erythrocyte membrane. However. thiol-reducing agents prevented the protein-crosslinking and lipid peroxidation on the NEM-synergistic hemolysis by partially scavenging hydroxyl radical and maintaining the thiol group of erythrocyte membrane in the reduced state. In addition, erythrocytes pretreated with 2,2,5,7,8-pentamethyl-6-hydroxychromane (PMC), vitamin E homologue was able to delay and decrease the lipid peroxidation when compared to cells pretreated with both NEM and PMC. We suggest that the presence of reduced thiols in inner membrane protein by GSH can prevent the protein-crosslinking and the lipid peroxidation, and eventually prevent the oxidative hemolysis of erythrocyte.

  • PDF

Inhibitory Effect of DPPH Radical Scavenging Activity and Hydroxyl Radicals (OH) Activity of Hydrocotyle sibthorpioides Lamarck (피막이풀의 DPPH 라디칼과 hydroxyl radicals (OH) 항산화 활성 및 리폭시게나아제 저해 효과)

  • Cho, Kyung-Soon
    • Journal of Life Science
    • /
    • v.26 no.9
    • /
    • pp.1022-1026
    • /
    • 2016
  • In this study the hot water extract was prepared from Hydrocotyle sibthorpioides (Araliaceae) leaves and stems to study antioxidant activities and lipoxygenase inhibition. The extract showed the protective hydroxyl radical (-OH) which can damage virtually all types of macromolecules: carbohydrates, nucleic acids (mutations), lipids (lipid peroxidation), and amino acids. Hydroxyl radical scavenging activity of H. sibthorpioides was 78.6%. The extract showed strong activity against 1, 1- diphenyl 2-picrylhyorazyl (DPPH) which is a well-known radical and a trap (scavenger) for other radicals. DPPH scavenging activity of leaves of H. sibthorpioides was evaluated at 8.0 mg/ml was 86.0%. Lipoxygenases (LOXs) constitute a heterogeneous family of lipid peroxidizing enzymes capable of oxygenating polyunsaturated fatty acids to their corresponding hydroperoxy derivatives. The inhibitory effect of 15-LOX by H. sibthorpioides was assayed using a Morgan microplate assay. The extract of H. sibthorpioides was 55.5% inhibitory effects on the inhibition of LOX at 8.0 mg/ml. The IC50 values for OH activity, DPPH activity, and LOX inhibition from leaves 5.23 mg/ml, 6.44 mg/ml, and 3.71 mg/ml, respectively. Antioxidative activity assay showed that the water extracts from leaf and stem had a strong reducing power. These results show that H. sibthorpioides has some phytochemical constituents which may be active against the free radicals (OH and DPPH) and lipoxygenase enzyme.

A Study on the Degradation Characteristics of 1,4-dioxane at Different Initial $H_2O_2$ Concentration with Advanced Oxidation Process using Ozone and Hydrogen Peroxide ($O_3/H_2O_2$를 이용한 고급산화공정에서 초기 $H_2O_2$ 농도에 따른 1,4-dioxane의 제거 특성 연구)

  • Park, Jin-Do;Suh, Jung-Ho;Lee, Hak-Sung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1108-1113
    • /
    • 2005
  • Advanced oxidation process involving $O_3/H_2O_2$ was used to eliminate 1,4-dioxane and to enhance the biodegradability of dioxane-contaminated water. Oxidation process was carried out in a bubble column reactor under different pH and $H_2O_2$ concentrations. The removal efficiencies of 1,4-dioxane were investigated at hydrogen peroxide concentration between 40 and 120 mg/L. At the same pH, removal efficiencies of 1,4-dioxane increased with increasing initial $H_2O_2$ concentration. There was a linear relationship between initial concentration of $H_2O_2$ and the amount of consumed $O_3$. It was observed that the high $H_2O_2$ concentration accelerated the generation of hydroperoxy ions(${HO_2}^-$) and hydroxyl radicals($OH{\cdot}$). Hydrogen peroxide enhanced the decomposition of 1,4-dioxane and the biodegradability of the solution.